Porous Properties of Carbon/Carbon Composite Xerogels

Article Preview

Abstract:

Carbon/carbon composite xerogels are prepared by a vacuum drying technique whereas a carbon cryogel is synthesized by a freeze drying technique to compare the effect of these drying methods at the selective synthesis condition. Resorcinol and formaldehyde are used to prepare a matrix phase and cotton fibers are acted as a disperse phase of the carbon/carbon composite xerogels. Here resorcinol and formaldehyde is utilized to synthesize the carbon cryogel only. The carbon/carbon composite xerogels and the carbon cryogel were analyzed by a nitrogen adsorption apparatus and a field emission scanning electron microscope. The results support that the vacuum drying can decrease the pore shrinkage despite of the gas-liquid interface. The porous properties of the carbon xerogel is quite equivalent to the porous properties of the carbon cryogel. When the porous properties of carbon xerogels are considered, their porous properties can be preserved at the high porosity until 0.15 g/g of the cotton fibers/resorcinol ratio. At 0.25 g/g of this ratio, the porous properties start decreasingly.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

62-67

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Kraiwattanawong, N. Sano and H. Tamon: Carbon Vol. 49 (2011), pp.3404-3411.

DOI: 10.1016/j.carbon.2011.04.018

Google Scholar

[2] K. Kraiwattanawong, N. Sano and H. Tamon: Microporous Mesoporous Mater.Vol. 153 (2012), p.47.

Google Scholar

[3] K. Kraiwattanawong, N. Sano and H. Tamon: Microporous Mesoporous Mater. Vol. 165 (2013) p.228.

Google Scholar

[4] J. Wang, M. Glora, R. Petricevic, R. Saliger, H. Proebstleand and J. Fricke: J. Porous Mater. Vol. 8 (2001), p.159.

DOI: 10.1023/a:1009607211736

Google Scholar

[5] C. Schmitt, H. Proebstle and J. Fricke: J. Non-Cryst. Solids Vol. 285 (2001), p.277.

Google Scholar

[6] R.W. Fu, B. Zhang, J. Liu, S. Weiss, J.Y. Ying, M.S. Dresselhaus, G. Dresselhaus, J.H. Satcher and T.F. Baumann: J. Mater. Res. Vol. 18 (2003), p.2765.

DOI: 10.1557/jmr.2003.0386

Google Scholar

[7] R. Petricevic, M. Glora and J. Fricke: Carbon Vol. 39 (2001), p.857.

Google Scholar

[8] H. Tamon, H. Ishizaka, T. Yamamoto and T. Suzuki: Carbon Vol. 37 (1999), p. (2049).

Google Scholar

[9] H. Tamon, H. Ishizaka, T. Yamamoto and T. Suzuki: Carbon Vol. 38 (2000), p.1099.

Google Scholar

[10] S.T. Mayer, J. Kaschmitter and R.W. Pekala, U.S. Patent 5,420,168 (1995).

Google Scholar

[11] K. Kraiwattanawong, H. Tamon and P. Praserthdam: Microporous Mesoporous Mater. Vol. 138 (2011), p.8.

Google Scholar

[12] C. Lin and J.A. Ritter: Carbon Vol. 35 (1997), p.1271.

Google Scholar

[13] T. Yamamoto, T. Nishimura, T. Suzuki and H. Tamon: Drying Technol. Vol. 19 (2001), p.1319.

Google Scholar

[14] D. Dollimore and G.R. Heal: J. Appl. Chem. Vol. 14 (1964), p.109.

Google Scholar

[15] M.M. Dubinin and L.V. Radushkevich: Dokl. Akad. Nauk. SSSR. Vol. 55 (1947), p.327.

Google Scholar

[16] B.C. Lippens and J.H. deBoer: J. Catal. Vol. 4 (1965), p.319.

Google Scholar

[17] K.S.W. Sing and R.T. Williams, Adsorption Sci. Technol. Vol. 22 (2004), p.773.

Google Scholar

[18] K. Kraiwattanawong, N. Sano and H. Tamon: Microporous Mesoporous Mater. Vol. 231 (2016) p.57.

Google Scholar