Green Synthesis of AgNPs Coated Mesoporous Silica Nanoparticles Using Tyrosine as Reducing/Stabilising Agent

Article Preview

Abstract:

A novel, simple and environmental friendly approach to fabricate silver nanoparticles (AgNPs) on mesoporous silica nanoparticles (MSNs) using tyrosine (Tyr) as biological reducing agent was developed. The functionalization of Tyr with MSNs (Tyr-MSNs) (150 nm in length) by the sol-gel process was confirmed by the characteristic peaks of amino, carboxyl and silanol groups appeared in FTIR spectrum and the change of the zeta potential from 0 mV at pH 2 to-60 mV at pH 12. Then, AgNPs were formed on the surface of Tyr-MSNs (Tyr-MSN@AgNPs) via only reducibility from phenolic group of Tyr and catalytic activity from base at room temperature. TEM images and UV-Visible absorption band at 420 nm supported the obtained AgNPs (18 nm at pH 11) were tightly bound to Tyr-MSNs even after centrifugation at high speed. These Tyr-MSN@AgNPs would be potentially used as drug carrier in biomedical applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

89-93

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Mani, C. Sharma, S. Kumar and S.K. Awasthi 2014 J. Mol. Catal. A: Chem. 392 150-156.

Google Scholar

[2] K. Farhadi, M. Forough, R. Molaei, S. Hajizadeh and A. Rafipour, 2012 Sens. Actuator B-Chem. 61 880-885.

Google Scholar

[3] L. Zhao, H. Wang, K. Huo, L. Cui, W. Zhang, H. Ni, Y. Zhang, Z. Wu and P.K. Chu 2011 Biomaterials 32 5706-5716.

DOI: 10.1016/j.biomaterials.2011.04.040

Google Scholar

[4] T. Tashi, N. Vishal Gupta and V.B. Mbuya 2016 J. Chem. Pharm. Res. 8 526-537.

Google Scholar

[5] Z.H. Zhang, C.H. Liu, J.H. Bai, C.C. Wu, Y. Xiao, Y.H. Li, J. Zheng, R.H. Yang and W.H. Tan 2015 ACS Appl. Mater. Interfaces 7 6211-6219.

Google Scholar

[6] J.L. Vivero-Escoto, I.I. Slowing, V.S.Y. Lin and B.G. Trewyn 2010 Small 6 1952-(1967).

Google Scholar

[7] S. Agnihotri, S. Mukherji and S. Mukherji 2014 RSC Adv. 4 3974-3983.

Google Scholar

[8] A. Callegari, D. Tonti and M. Chergui 2003 Nano Lett. 3 1565-1568.

Google Scholar

[9] P. Tippayawat, N. Phromviyo, P. Boueroy and A. Chompoosor 2016 PeerJ.

Google Scholar

[10] B. I. Kharisov, O. V. Kharissova and H. V. Rasika Dias 2014 Nanomaterials for Environmental Protection Canada: John Wiley & Sons; pp.313-322.

Google Scholar

[11] H.K. Daima, P.R. Selvakannan, A.E. Kandjani, R. Shukla, S.K. Bhargava and V. Bansal 2014 Nanoscale 6 758-765.

DOI: 10.1039/c3nr03806h

Google Scholar

[12] S.C. Warren, M.R. Perkins, A.M. Adams, M. Kamperman, A.A. Burns, H. Arora, E. Herz, T. Suteewong, H. Sai, Z. Li, J. Werner, J. Song, U. Werner-Zwanziger, J.W. Zwanziger, M. Grätzel, F.J. Disalvo and U. Wiesner 2012 Nat. Mater. 11 460-467.

DOI: 10.1038/nmat3274

Google Scholar

[13] T. Suteewong, H. Sai, J. Lee, M. Bradbury, T. Hyeon, S.M. Gruner and U. Wiesner 2010 J. Mater. Chem. 20 7807-7814.

DOI: 10.1039/c0jm01002b

Google Scholar

[14] S.C. Feifel, F. Lisdat 2011 J. Nanobiotechnology 9.

Google Scholar

[15] Z. Zaheer and Rafiuddin 2012 Colloids Surf. B Biointerfaces 89 211-215.

Google Scholar

[16] S. Si, R.R. Bhattacharjee, A. Banerjee and T.K. Mandal 2006 Chem. Eur. J. 12 1256-1265.

Google Scholar

[17] P.R. Selvakannan, A. Swami, D. Srisathiyanarayanan, P.S. Shirude, R. Pasricha, A.B. Mandale and M. Sastry 2004 Langmuir 20 7825-7836.

DOI: 10.1021/la049258j

Google Scholar

[18] N. Vigneshwaran, N.M. Ashtaputre, P.V. Varadarajan, R.P. Nachane, K.M. Paralikar and R.H. Balasubramanya 2007 Materials Lett. 61 1413-1418.

DOI: 10.1016/j.matlet.2006.07.042

Google Scholar

[19] P. Mukherjee, A. Ahmad, D. Mandal, S. Senapati, S.R. Sainkar, M.I. Khan, R. Parishcha, P.V. Ajaykumar, M. Alam, R. Kumar and M. Sastry 2001 Nano Letters 1 515-519.

DOI: 10.1021/nl0155274

Google Scholar