Assessment of Photoelectrode Material Based on (TiO2)1-x / (Al65Cu24Fe11)x in Dye-Sensitized Solar Cell Applications

Article Preview

Abstract:

This paper presents the results obtained for incorporating the Al65Cu24Fe11 material with the conventional TiO2 as the electron injection layer in dye-sensitized solar cells. The icosahedral phase of the Al-Cu-Fe system has attractive physical and optical properties at the target composition, and is obtained by synthesizing the material via the facile high energy ball milling process to ensures the highest possible interdiffusion of elemental powders, followed by heat treatment. The evolution of the i-phase is confirmed via X-ray diffraction, scanning electron microscopy and energy dispersive x-ray spectroscopy. The optical absorption and electrical properties of the compound are investigated by spectrometry, four probe measurement and Mott-Schottky analysis, respectively. Different cells with different percentages (x value) of (TiO2)1-x/(Al65Cu24Fe11)x are constructed and tested to obtain the electrical characteristic curves, efficiency and fill factor to quantify the effect of the proposed material mixture.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

94-99

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. O'Regan and M. Grätzel, Nature, 1991, vol. 353(6346), pp.737-740.

Google Scholar

[2] M. Nazeeruddin, P. Péchy and M. Grätzel, Chem. Commun. 1997, vol. 18, pp.1705-1706.

Google Scholar

[3] M. Green, K. Emery, Y. Hishikawa , W. Warta and E. Dunlop, Prog. Photovolt: Res. Appl., 2015, vol. 23(7), pp.805-812.

DOI: 10.1002/pip.2637

Google Scholar

[4] O. Byrne, I. Ahmad, , P. Surolia, Y. Gun'ko, and K. Thampi, Sol. Energy, 2014, vol. 110, pp.239-246.

Google Scholar

[5] Z. Huang, T. Hua, J. Tian, L. Wang, H. Meier and D. Cao, Dyes Pigm., 2016, vol. 125, pp.229-240.

Google Scholar

[6] S. Manoharan, A. Asiri and S. Anandan, Sol. Energy, 2016, vol. 126, pp.22-31.

Google Scholar

[7] H. Chen, C. Hong, C. Kung, C. Mou, K. Wu and K. Ho, J. Power Sources, 2015, vol. 288, pp.221-228.

Google Scholar

[8] P. Wang, J. Wang, H. Yu, L. Zhao and J. Yu, Mater. Res. Bull., 2016, vol. 74, pp.380-386.

Google Scholar

[9] L. Chu, Z. Qin, Q. Zhang, W. Chen, J. Yang and X. Li, Appl. Surf. Sci., 2016, vol. 360, pp.634-640.

Google Scholar

[10] B. Cantor, Novel nanocrystalline alloys and magnetic nanomaterials, 4th ed. Bristol: Institute of Physics Pub., Oxford, UK, 2005, pp.18-23.

Google Scholar

[11] A. Alami, D. Zhang, C. Aokal, J. Abed, I. Abdoun and H. Alawadhi, Int. J. of Thermal & Environmental Engineering, 2016, vol. 11(1), pp.67-72.

Google Scholar

[12] Alami, J. Abed, M. Almheiri and A. Alketbi, A., Metall. Mater. Trans. E, 2015, vol. 2(4), pp.229-235.

Google Scholar

[13] Alami, D. Zhang, C. Aokal, J. Abed, I. Abdoun and H. Alawadhi, H., Metall. Mater. Trans. E, 2016, vol. 3(1), pp.37-45.

Google Scholar

[14] Alami, A. Alketbi, J. Abed and M. Almheiri, Int. J. Energy Res. 2015, vol. 40(4), pp.514-521.

Google Scholar

[15] Alami, A., Zhang, D., Aokal, C., Abed, J., Abdoun, I., & Alawadhi, H. (2016).

Google Scholar

[16] Alami, A., Alketbi, A., Abed, J., & Almheiri, M. (2015). Assessment of Al-Cu-Fe compound for enhanced solar absorption. International Journal Of Energy Research, 40(4), 514-521. Metallurgical And Materials Transactions E, 3(1), 37-45.

DOI: 10.1002/er.3468

Google Scholar