Boundary Layer Flow of Magnetic Nanoliquids due to a Radially Rotating Stretchable Plate

Article Preview

Abstract:

The effects of stretchable rotating flat surface on the time dependent 3-dimensional boundary layer flow of magnetic nanoliquid in the presence of thermal radiation have been investigated. The modelled set of nonlinear coupled ODEs governing the flow is solved numerically by finite difference scheme and shooting technique. For understanding the effects of geothermal viscosity, stretching parameter and thermal radiation on the flow and temperature fields, a range of Prandtl number is taken into account. The heat transfer rate and skin frictions due to the above physical parameters are also computed. A significant enhancement in the resistance of the fluid flow is noticed due to the viscosity variations and the stretching of the plate. Further, the heat dissipation becomes faster with the enhancement of the thermal radiation and the Prandtl number.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

100-105

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. V. Kármán: Über laminare und turbulente Reibung. ZAMM‐Journal of Applied Mathematics and Mechanics/ Zeitschrift für Angewandte Mathematik und Mechanik, 1.4 (1921), pp.233-252.

DOI: 10.1002/zamm.19210010401

Google Scholar

[2] F. Frusteri and E. Osalusi: On MHD and slip flow over a rotating porous disk with variable properties. International Communications in Heat and Mass Transfer, 34.4 (2007), pp.492-501.

DOI: 10.1016/j.icheatmasstransfer.2007.01.004

Google Scholar

[3] S. A., Devi and B. Ganga: Effects of Viscous and Joules dissipation on MHD flow, heat and mass transfer past a stretching porous surface embedded in a porous medium. Nonlinear Analysis: Modelling and Control, 14.3 (2009), pp.303-314.

DOI: 10.15388/na.2009.14.3.14497

Google Scholar

[4] T. Fang, J. Zhang and S. Yao: Slip MHD viscous flow over a stretching sheet–an exact solution. Communications in Nonlinear Science and Numerical Simulation, 14.11 (2009), pp.3731-3737.

DOI: 10.1016/j.cnsns.2009.02.012

Google Scholar

[5] A. Nazir and T. Mahmood: Analysis of flow and heat transfer of viscous fluid between contracting rotating disks. Applied Mathematical Modelling, 35.7 (2011), pp.3154-3165.

DOI: 10.1016/j.apm.2010.12.015

Google Scholar

[6] N. Bachok, A. Ishak and I. Pop: Flow and heat transfer over a rotating porous disk in a nanofluid. Physica B: Condensed Matter, 406.9 (2011), pp.1767-1772.

DOI: 10.1016/j.physb.2011.02.024

Google Scholar

[7] M. Turkyilmazoglu: MHD fluid flow and heat transfer due to a stretching rotating disk. International Journal of Thermal Sciences, 51 (2012), pp.195-201.

DOI: 10.1016/j.ijthermalsci.2011.08.016

Google Scholar

[8] N. S. Akbar, S. Nadeem, R. U. Haq and Z. H. Khan: Radiation effects on MHD stagnation point flow of nano fluid towards a stretching surface with convective boundary condition. Chinese Journal of Aeronautics, 26.6 (2013), pp.1389-1397.

DOI: 10.1016/j.cja.2013.10.008

Google Scholar

[9] G. C. Shit and S. Majee: Hydromagnetic Flow over an Inclined Non-Linear Stretching Sheet with Variable Viscosity in the Presence of Thermal Radiation and Chemical Reaction. Journal of Applied Fluid Mechanics, 7.2 (2014), pp.239-247.

DOI: 10.36884/jafm.7.02.19382

Google Scholar

[10] P. Ram and V. Kumar: FHD flow with heat transfer over a stretchable rotating disk. Multidiscipline Modeling in Materials & Structures, 9.4 (2013), pp.524-537.

DOI: 10.1108/mmms-03-2013-0013

Google Scholar

[11] M. Turkyilmazoglu: Nanofluid flow and heat transfer due to a rotating disk. Computers & Fluids, 94 (2014), pp.139-146.

DOI: 10.1016/j.compfluid.2014.02.009

Google Scholar

[12] P. Ram and V. Kumar: Heat transfer in FHD boundary layer flow with temperature dependent viscosity over a rotating disk. Fluid Dynamic and Material Processing, 10.2 (2014), pp.179-196.

Google Scholar

[13] P. Ram, V. K. Joshi and S. Sharma: Magneto-Viscous Effects on Unsteady Nano-Ferrofluid Flow Influenced by Low Oscillating Magnetic Field in the Presence of Rotating Disk. Recent Advances in Fluid Mechanics and Thermal Engineering, (2014).

Google Scholar

[14] Griffiths, P. T.: Flow of a generalized Newtonian fluid due to a rotating disk. Journal of Non-Newtonian Fluid Mechanics, 221 (2015), pp.9-17.

DOI: 10.1016/j.jnnfm.2015.03.008

Google Scholar

[15] M. Mustafa, J. A. Khan, T. Hayat and A. Alsaedi: On Bödewadt flow and heat transfer of nanofluids over a stretching stationary disk. Journal of Molecular Liquids, 211 (2015), pp.119-125.

DOI: 10.1016/j.molliq.2015.06.065

Google Scholar

[16] P. Ram, V. K. Joshi, K Sharma, M. Walia and N. Yadav: Variable viscosity effects on time dependent magnetic nanofluid flow past a stretchable rotating plate. Open Physics, 14.1 (2016), pp.651-658.

DOI: 10.1515/phys-2016-0072

Google Scholar

[17] P. Ram, V. K. Joshi and O. D. Makinde: Unsteady convective flow of hydrocarbon magnetite nano-suspension in the presence of stretching effects. Defect and Diffusion Forum, 377 (2017), pp.155-165.

DOI: 10.4028/www.scientific.net/ddf.377.155

Google Scholar

[18] V. K Joshi, P. Ram, R. K Sharma and D. Tripathi: Porosity effect on the boundary layer Bodewadt flow of a magnetic nanofluid in the presence of geothermal viscosity. The European Physical Journal Plus, 132.6 (2017), p.254.

DOI: 10.1140/epjp/i2017-11511-0

Google Scholar

[19] V. K. Joshi, P. Ram, D. Tripathi and K. Sharma: Numerical investigation of magnetic nanofluids flow over rotating disk embedded in a porous medium. Thermal Science. (2017) doi.org/10.2298/TSCI170323139J.

DOI: 10.2298/tsci170323139j

Google Scholar