Photonic Properties of PZT Powders along the Crystallization Process of the Polymeric Precursor

Article Preview

Abstract:

Lead zirconate titanate (PZT) is a wide versatile material applied in several electronic devices. Some of dielectric and piezoelectric characteristics depend on phase formation, crystallization and composition. In this work, we prepare PZT powder samples with different compositions by the Polymeric Precursor Method, which were thermally treated at very low temperatures in order to get amorphised powder samples. The zirconium-rich PZT6040 sample showed a significant uptake in photoluminescent emission between 320 oC and 350 oC, followed by a slightly increasing in bandgap energy. In spite of the bandgap energy posses the typical value for several structurally disordered semiconductors, these effects were associated to the coexistence of pyrochlore and tetragonal perovskite phases in that referred conditions.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

107-112

Citation:

Online since:

September 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.D. Durruthy-Rodríguez, J.M. Yáñez-Limón: Photoluminescence in Doped PZT Ferroelectric Ceramic System, Ferroelectrics - Physical Effects. (Dr. Mickaël Lallart Ed. InTech 2011).

DOI: 10.5772/21678

Google Scholar

[2] M.C. Rodríguez-Aranda, F. Calderón-Piñar, M.A. Hernández-Landaverde, J. Heiras, R. Zamorano-Ulloa, D. Ramírez-Rosales, J.M. Yáñez-Limón: J. Lumin. Vol. 179 (2016), p.280.

DOI: 10.1016/j.jlumin.2016.07.030

Google Scholar

[3] M. Hernández-García, M. D. Durruthy-Rodríguez, J. Costa-Marrero, F. Calderón-Piñar, J. D. S. Guerra, J. M. Yañez-Limón: J. Appl. Phys. Vol. 116 (4) (2014), p.043510.

DOI: 10.1007/s00339-009-5501-y

Google Scholar

[4] E. Orhan, F.M. Pontes, E.R. Leite, P.S. Pizani, J.A. Varela, E. Longo: Chem. Phys. Chem. Vol. 6 (2005), p.1530.

Google Scholar

[5] E. Longo, A.T. de Figueiredo, M.S. Silva, V.M. Longo,| V.R. Mastelaro, N.D. Vieira, M. Cilense, R.W.A. Franco, and J.A. Varela: J. Phys. Chem. A Vol. 112 (2008), p.8953.

DOI: 10.1021/jp801607m

Google Scholar

[6] G.F. Teixeira, T.R. Wright, D.C. Manfroi, E. Longo, J.A. Varela, M.A. Zaghete:Mater. Lett. Vol. 139 (2015), p.443.

Google Scholar

[7] C.A. Oliveiran, E. Longo, J.A. Varela, M.A. Zaghete: Ceram. Int. Vol. 40 (2014), p.1717.

Google Scholar

[8] Z.L. Wang: NanoToday Vol. 5 (2010), p.540.

Google Scholar

[9] Z.H. Dong, T.N. Ye, Y. Zhao, J. Yu, F. Wang, L. Zhang, X. Wang, S. Guo: J. Mater. Chem. Vol. 21 (2011), p.5978.

Google Scholar

[10] L.H. Oliveira, A.P. de Moura, E. Longo, J.A. Varela, I.L.V. Rosa: J. Alloys Comp. Vol. 579 (2013), p.227.

Google Scholar

[11] M.A. Santos, M. S. Silva, E,O, Marcio, S. Góes, M,A. Zaghete, C,O. Paiva-Santos, P.S. Pizani, M. Cilense, J.A. Varela, E. Longo: J. Lumin. Vol. 127 (2) (2007), p.689.

DOI: 10.1016/j.jlumin.2007.04.002

Google Scholar

[12] A.V. Petrov, J. Macutkevic, J. Banys. N.A. Kalanda, L.I. Gurskii, A.V. Solnyshkin, A.O. Plyushch, P.P. Kuzhir, N.A. Sobolev: Mod. Elect. Mater. Vol. 3 (1) (2017), p.26.

DOI: 10.1016/j.moem.2017.04.001

Google Scholar

[13] J.M. Yáñez-Limón, G. Rivera-Ruedas, F. Sánchez De: Jesús, A. M. Bolarín-Miró, R. Jiménez Riobóo and J. Muñoz-Saldaña: Synthesis of PZT Ceramics by Sol-Gel Method and Mixed Oxides with Mechanical Activation Using Different Oxides as a Source of Pb, Ferroelectrics - Material Aspects. (Dr. Mickaël Lallart Ed. In Tech. 2001).

DOI: 10.5772/18125

Google Scholar

[14] O. Yamaguchi, H. Mogi: J. Amer. Ceram. Soc. Vol. 72 (1989), p.1065.

Google Scholar

[15] R.S. Nasar, M. Cerqueira, E. Longo and J.A. Varela: Ceram. Vol. 54 (2008), p.38.

Google Scholar

[16] M.P. Pechini: Method of preparing lead and alkaline earth titanates and niobates and coating method using the same to form a capacitor, U.S. Patent 3,330,697 (1967).

Google Scholar

[17] JCPDS - Joint Committee on Powder Diffraction Standards/International Center for Diffraction Data, Pennsylvania, Powder Diffraction File, (2003).

Google Scholar

[18] D.L. Wood, J. Tauc: Phys. Review B. Vol. 5 (1972), p.3144.

Google Scholar

[19] P. Scherrer: Math. Phys. Klasse 2 (1918) 98-100.

Google Scholar

[20] E. Buixaderas, I. Gregora, M. Savinov, J. Hlinka, Li Jin, D. Damjanovic, B. Malic:Phys. Rev. B Vol. 91 (2015), p.014104.

Google Scholar

[21] K. Mohammad, E. Taheri-Nassaj: Appl. Phys. A Vol. 116 (2014), p.179.

Google Scholar

[22] A.J.H. Macke: Solid State Chem. Vol. 18 (1976) 337-346.

Google Scholar

[23] A.T. Figueiredo, S. Lazaro, E. Longo, E.C. Paris, J.A. Varela, M.R. Joya, P.S. Pizani: Chem. Mater. Vol. 18 (4) (2006), p.2904.

DOI: 10.1021/cm060386y

Google Scholar

[24] Y. Liu, C.N. Xu, K. Nonaka, H. Tateyama: Ferroelectrics Vol. 264 (2011), p.331.

Google Scholar

[25] V.M. Longo, M.S. Silva, A.T. Figueiredo, R.W.A. Franco, C. Vila, M. Cilense, J.A. Varela, E. Longo: Chem. Phys. Lett. Vol. 475 (2009), p.96.

Google Scholar

[26] M. Anicete-Santos, M.S. Silva, E. Orhan, M.S. Góes, M.A. Zaghete, C.O. Paiva-Santos, P.S. Pizani, M. Cilense, J.A. Varela, E. Longo: J. Lumin. Vol. 127 (2007), p.689.

DOI: 10.1016/j.jlumin.2007.04.002

Google Scholar

[27] P. Kubelka, F.Z. Munk: Tech. Phys. Vol.12 (1931), p.593.

Google Scholar

[28] B. Jaffe, W.R. Cook, H. Jaffe: Piezoelectric Ceramics. (Academic Press, London and New York, ISBN 0-12-379550-8, 1971).

Google Scholar