The Effect of Iron (III) Co-Insertion in Magnesium-Aluminum Hydrotalcites Obtained by Precipitation Method at pH 11

Article Preview

Abstract:

Hydrotalcite are anionic clay material presenting LDH arrangement and high porosity and specific areas, which make it a good adsorbent for pollutant species in water. Besides that, that material type can be used as catalyst or catalyst support in several industrial processes. The most common compositions is based on metallic mix hydroxide with high content of magnesium, but their adsorptive properties arise from aluminum replacement in layer structure. The present work presents the synthesis of carbonated magnesium-aluminum hydrotalcite through the precipitation method in order to investigate the co-insertion of iron (III) in aluminum site. It was found the iron (III) co-inserted samples obtained at 100 and 200 oC for 4 hours present no substantial harming in relation to the common magnesium-aluminum composition. All of the samples presented high porosity and specific area, becoming an alternative anionic adsorptive.

You might also be interested in these eBooks

Info:

[1] K. Setshedi, J. Ren, O. Aoyi, M.S. Onyango: Int. J. Phys. Sci. Vol. 7 (1) (2012), p.63.

Google Scholar

[2] W. Ma, N. Zhao, G. Yang, L. Tian, R. Wang: Desalination Vol. 2681 (3) (2011), p.20.

Google Scholar

[3] Y. Yang, n. Gao, W. Chu, Y. Zhang, Y. Ma: J. Hazard. Mater. Vol. 9 (210) (2012), p.318.

Google Scholar

[4] F. Cavani, F. Trifiró, A. Vaccari: Catal. Today Vol. 11 (1991), p.177.

Google Scholar

[5] L. Conceição, S.B.C. Pergher: Quim. Nova Vol. 30 (5) (2007), p.1077.

Google Scholar

[6] M. Kato, M.D. Azimi, S.H. Fayaz, M.D. Shah, M.Z. Hoque, N. Hamajima, S. Ohnuma, T. Ohtsuka, M. Maeda, M. Yoshinaga: Chemosphere Vol. 165 (2016), p.27.

DOI: 10.1016/j.chemosphere.2016.08.124

Google Scholar

[7] M.N. Timofeeva, A.E. Kapustin, V.N. Panchenko, E.O. Butenko, V.V. Krupskaya, A. Gil, M.A. Vicente: J. Mol. Catal. A Chem. Vol. 423 (2016), p.22.

Google Scholar

[8] L.I. Ardhayantia, S.J. Santosa: Procedia Chem. Vol. 148 (2016), p.1380.

Google Scholar

[9] M. Bolognini, F. Cavani, D. Scagliarini, C. Flego, C. Perego, M. Saba: Catal. Today Vol. 75 (2002), p.103.

DOI: 10.1016/s0920-5861(02)00050-0

Google Scholar

[10] B. Wiyantokoa, P. Kurniawatia, T.E. Purbaningtias, I. Fatimah: Procedia Chem. Vol. 17 (2015), p.21.

Google Scholar

[11] T. Baskaran, J. Christopher, A. Sakthivel: RSC Adv. Vol. 5 (2015), p.98875.

Google Scholar

[12] C.W. Beck: Am. Mineral Vol. 35 (1950), p.1006.

Google Scholar

[13] F. Silvério: Springer Plus Vol. 2 (211) (2013), p.1.

Google Scholar

[14] F.M Labajos, V. Rives: Inorg. Chem. Vol. 34 (1996), p.5313.

Google Scholar

[15] A.S. Prakash, V. Kamath, M.S. Hegde: Mater. Res. Bull. Vol. 35 (2000), p.2189.

Google Scholar

[16] D.M. Roy, R. Roy, E.F. Osborn: Am. J. Sci. Vol. 251 (1953), p.337.

Google Scholar

[17] N.S. Puttaswamy, V. Kamath: J. Mater. Chem. Vol. 7 (9) (1997), p. (1941).

Google Scholar

[18] M. Belloto, B. Rebours, O. Clause, J. Lynch, D. Bazin, E. Elkaïn: J. Phys. Chem. US Vol. 100 (20) (1996), p.8535.

Google Scholar

[19] K. Ebitani, K. Motokura, K. Mori, T. Mizugaki, K. Kaneda: J. Org. Chem. Vol. 71 (2006), p.5440.

Google Scholar

[20] JCPDS - Joint Committee on Powder Diffraction Standards/International Center for Diffraction Data, Pennsylvania, Powder Diffraction File (2003).

Google Scholar

[21] G. Socrates: Infrared and Raman Characteristic Group Frequencies. (John Wiley & Sons 3ª ed. Chichester, 2004).

Google Scholar

[22] H. Marsh, B. Rand: J. Colloid Interf. Sci. Vol. 33 (1970), p.478.

Google Scholar

[23] J. Landers, G.Y. Gor, A.V. Neimark: Colloid Surface A Vol. 437 (2013), p.33.

Google Scholar