Assessment of the Photocatalytic Efficiency of TiO2 in the Presence of Sulphate

Article Preview

Abstract:

The use of salts on the degradation of toxic substances may cause the acceleration or delay of radicals production originating from the degradation process. This work had as its objective to investigate the presence and absence of potassium sulphate salt on the photocatalysis of Bentazone using TiO2 as a catalyzer. The effect of the sulphate ion on the photodegradation of the Bentazone herbicide was studied using concentrations of 0,05; 0,10 and 0,20 g L-1 with 0,5 g L-1 of TiO2, in suspension of 180 mL from bentazone solution (3,0x10-5 mol L-1). The samples were analyzed through UV-Vis spectroscopy. The presence of sulphate ions presented a difference of 3,3% on the degradation of bentazone in comparison to TiO2 alone.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

589-593

Citation:

Online since:

September 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D.V. Magano, I.R.C. Krolow, A.D. Grutzmacher, L.E. Panazzo, F.S. Armas, M. Zimmer, Efeitos secundários de herbicidas aplicados em soja sobre Trichogramma pretiosum ; Pesq. Agrop. Gaúcha, 19, (2013) 69-80.

Google Scholar

[2] Information on; http//www.agro.basf.com.br/agr/ms/apbrazil/pt_BR/function/conversions:/publish/content/APBrazil/solutions/herbicides/FISPQ/BASAGRAN600.PDF.

Google Scholar

[3] M.R. Hoffmann, S.T. Martin, W. Choi, D.W. BAhnemann, Environmental Applications of semiconductor photocatalysis. Chemical Reviews, 95, (1995) 69-96.

DOI: 10.1021/cr00033a004

Google Scholar

[4] L. Liu, X. Chen, Titanium Dioxide Nanomaterials: Self-Structural Modifications. Chemical Reviews. 114, (2014) 9890 − 9918.

DOI: 10.1021/cr400624r

Google Scholar

[5] M. Yasmina, K. Mourad, S.H. Mohammed, C. Khaoula, Treatment heterogeneous photocatalysis; factors influencing the photocatalytic degradation by TiO2. Energy Procedia, 50, (2014) 559-566.

DOI: 10.1016/j.egypro.2014.06.068

Google Scholar

[6] A. Pandey, S. Kalal, C. Ameta, R. Ameta, S. Kumar, P.B. Punjabi, Synthesis, characterization and application of naïve and nano-sized titanium dioxide as a photocatalyst for degradation of methylene blue. Journal of Saudi Chemical Society.

DOI: 10.1016/j.jscs.2015.05.013

Google Scholar

[7] C. Belver, J. Bedia, J. Rodriguez., J.Titania–clay heterostructures with solar photocatalytic applications. Applied Catalysis B: Environmental,176, (2015) 278-287.

DOI: 10.1016/j.apcatb.2015.04.004

Google Scholar

[8] J. Zhang, L. Zhang, J. Lv, S. Zhou, H. Chen, Y. Zhao, X. Wang, Exceptional visible-light-induced photocatalytic activity of attapulgite-BiOBr-TiO2 nanocomposites. Applied Clay Science, 90, (2014) 135-140.

DOI: 10.1016/j.clay.2013.12.037

Google Scholar

[9] E. Kordouli, K. Bourikas, A. Lycourghiotis, C. Kordulis, The mechanism of azo-dyes adsorption on the titanium dioxide surface and their photocatalytic degradation over samples with various anatase /rutile ratios. Catalysis Today, 252, (2015).

DOI: 10.1016/j.cattod.2014.09.010

Google Scholar

[10] J. Andersen, M. Pelaez, L. Guay, Z. Zhang, K. O'shea, D.D. Dionysiou, NF-TiO2 photocatalysis of amitrole and atrazine with addition of oxidants under simulated solar light: emerging synergies, degradation intermediates, and reusable attributes. Journal of Hazardous Materials, 260, (2013).

DOI: 10.1016/j.jhazmat.2013.05.056

Google Scholar

[11] E.I. Seck, D.J.M. Rodríguez, F.C. Rodríguez, G.O.M. Díaz, J. Araña, P.J. Peña, Photocatalytical removal of bentazon using commercial and sol–gel synthesized nanocrystalline TiO2: Operational parameters optimization and toxicity studies. Chemical Engineering Journal, 203, (2012).

DOI: 10.1016/j.cej.2012.06.119

Google Scholar

[12] N. Vela, J. Fenoll, I. Garrido, G. Navarro, M. Gambin, S. Navarro, Photocatalytic mitigation of triazinone herbicide residues using titanium dioxide in slurry photoreactor. Catalysis Today, 252, (2015) 70 – 72.

DOI: 10.1016/j.cattod.2014.12.011

Google Scholar

[13] L. Yassumoto, J.A. Osajima, K. Takashima, Efeitos de oxidantes e sais inorgânicos na degradação fotocatalítica do herbicida imazetapir mediada por dióxido de titânio. Eclética Química, 32, (2007) 27-32.

DOI: 10.1590/s0100-46702007000100004

Google Scholar

[14] G.R.M. Echavia, F. Matzusawa, N. Negishi, Photocatalytic degradation of organophosphate and phosphonoglycine pesticide using TiO2 immobilized on silica gel. Chemosphere, 76, (2009) 595 – 600.

DOI: 10.1016/j.chemosphere.2009.04.055

Google Scholar

[15] B.J. Martijn, P.C. Kamp, J.C. Kruithof, UV/H2O2 Treatment: An Essential Barrier in a Multi Barrier Approach For Organic Contaminant Control. IUVA News, 10, (2008) 11 – 19.

Google Scholar

[16] N.A. Mir, M.M. Haque, A. Khan, M. Muneer, C. Boxall, (. Photoassisted degradation of a herbicide derivative, dinoseb, in aqueous suspension of titania., The Scientific World Journal.

DOI: 10.1100/2012/251527

Google Scholar

[17] K.A.S. Coelho, Fotólise e fotocatálise do herbicida basagran em solução aquosa. Dissertação de Mestrado em Agronomia. Universidade Federal do Piauí. (2013).

Google Scholar

[18] P. W. Atkins, Physical Chemistry.(6th ed). Rio de Janeiro: Brasil (2002).

Google Scholar

[19] L. Zhang, F. Lv, W. Zhang, R. Li, H. Zhong, Y. Zhao, Y. Zhang, X. Wang,. Photodegradation of methylorange by attapulgite–SnO2–TiO2 nanocomposites. Journal of Hazardous Materials, 171 (2009) 294-300.

DOI: 10.1016/j.jhazmat.2009.05.140

Google Scholar