The Definition of a Critical Deflection of Compressed Rods with the Creep by the Method of Bubnov-Galerkin

Article Preview

Abstract:

The comparison of the numerical methods: the finite element method, the Galerkin Method, the difference method is considered for the study of the stability of the rods. The dependence of the solution of the stability problem on the parameters of the discretization of these numerical methods is studied. It is shown that the mathematical models are sufficiently accurate to analyze the stability of the rods of constant and variable sections.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

127-132

Citation:

Online since:

September 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. V. Litvinov, E. S. Klimenko, I. I. Kulinich, S. B. Yazyeva, E. A. Torlina, A. Stability analysis of rods from EDB-10 at different variants of fixation, Inženernyj vestnik Dona. 2 (2011).

Google Scholar

[2] S. V. Litvinov, E. S. Klimenko, I. I. Kulinich, S. B. Yazyeva, Analysis of stability of polymer rods with account of creep deformation and initial imperfections, Inženernyj vestnik Dona. 2 (2011).

DOI: 10.1177/0307174x1504200206

Google Scholar

[3] S. V. Litvinov, B. M. Yazyev, A. N. Beskopylny, I. V. Ananyev, The Calculation of the stability of rods from EDB-10 at an initial deflection of the rod in the form of S-shaped curve, Inženernyj vestnik Dona. 1 (2012).

Google Scholar

[4] V. I. Andreev, Stability of polymer rods at creep: dissertation of candidate of technical sciences, Moscow, (1967).

Google Scholar

[5] I. I. Kulinich, Stability of longitudinally-compressed rods of variable stiffness at creep: dissertation of candidate of technical sciences, Rostov-on-Don, (2012).

Google Scholar

[6] A. S. Volmir, Stability of deformable systems, Nauka, Moscow, (1975).

Google Scholar

[7] S. B. Yazyev, Stability of rods at creep taking into account initial imperfections: dissertation of candidate of technical sciences, Rostov-on-Don, (2010).

Google Scholar

[8] B. M. Yazyev, V. I. Andreev, Buckling of longitudinally compressed rods of variable stiffness at creep, Inženernyj vestnik Dona. 4 (2012).

Google Scholar

[9] Y. V. Egorov, On the Lagrange problem about the strongest colon, Rapport Interne. 02-16 (2002) 1-7.

Google Scholar

[10] H. H. Bleich, Nonlinear creep deformations of columns of rechtangular cross section, Journ. of Appl. Mech. Dec., (1959).

Google Scholar

[11] V. I. Andreev, A. S. Chepurnenko, B. M. Yazyev, Energy method in the calculation stability of compressed polymer rods considering creep, Advanced Materials Research. 1004-1005 (2014) 257-260.

DOI: 10.4028/www.scientific.net/amr.1004-1005.257

Google Scholar

[12] V. I. Andreev, B. M. Yazyev, A. S. Chepurnenko, On the bending of a thin polymer plate at nonlinear creep, Advanced Materials Research. 900 (2014) 707-710.

DOI: 10.4028/www.scientific.net/amr.900.707

Google Scholar

[13] A.S. Chepurnenko, B.M. Yazyev, A.A. Savchenko, Calculation for the Circular Plate on Creep Considering Geometric Nonlinearity, Procedia Engineering. 150 (2016) 1680–1685.

DOI: 10.1016/j.proeng.2016.07.150

Google Scholar

[14] L.R. Mailyan, A.S. Chepurnenko, A. Ivanov, Calculation of prestressed concrete cylinder considering creep of concrete, Procedia Engineering. 165 (2016) 1853-1857.

DOI: 10.1016/j.proeng.2016.11.933

Google Scholar

[15] A.E. Dudnik, A.S. Chepurnenko, S.V. Litvinov, Determining the rheological parameters of polyvinyl chloride, with change in temperature taken into account, International Polymer Science and Technology. 44 (2017) 30-33.

DOI: 10.1177/0307174x1704400109

Google Scholar

[16] A.S. Chepurnenko, A.A. Savchenko, S.B. Yazyeva, Calculation of a three-layer plate by the finite element method taking into account the creep of the filler, MATEC Web of Conferences. 129 (2017) 05008.

DOI: 10.1051/matecconf/201712905008

Google Scholar

[17] A.S. Chepurnenko, N.V. Neumerzhitskaya, M.S. Turko, Finite Element Modeling of the Creep of Shells of Revolution Under Axisymmetric Loading, International Scientific Conference Energy Management of Municipal Transportation Facilities and Transport EMMFT 2017. Advances in Intelligent Systems and Computing. 692 (2017).

DOI: 10.1007/978-3-319-70987-1_86

Google Scholar

[18] A. S. Chepurnenko, V.V. Ulianskaya, S.B. Yazyev, I.M. Zotov, Calculation of wooden beams on the stability of a flat bending shape enhancement, MATEC Web of Conferences. 196 (2018) 01003.

DOI: 10.1051/matecconf/201819601003

Google Scholar