[1]
S. V. Litvinov, E. S. Klimenko, I. I. Kulinich, S. B. Yazyeva, E. A. Torlina, A. Stability analysis of rods from EDB-10 at different variants of fixation, Inženernyj vestnik Dona. 2 (2011).
Google Scholar
[2]
S. V. Litvinov, E. S. Klimenko, I. I. Kulinich, S. B. Yazyeva, Analysis of stability of polymer rods with account of creep deformation and initial imperfections, Inženernyj vestnik Dona. 2 (2011).
DOI: 10.1177/0307174x1504200206
Google Scholar
[3]
S. V. Litvinov, B. M. Yazyev, A. N. Beskopylny, I. V. Ananyev, The Calculation of the stability of rods from EDB-10 at an initial deflection of the rod in the form of S-shaped curve, Inženernyj vestnik Dona. 1 (2012).
Google Scholar
[4]
V. I. Andreev, Stability of polymer rods at creep: dissertation of candidate of technical sciences, Moscow, (1967).
Google Scholar
[5]
I. I. Kulinich, Stability of longitudinally-compressed rods of variable stiffness at creep: dissertation of candidate of technical sciences, Rostov-on-Don, (2012).
Google Scholar
[6]
A. S. Volmir, Stability of deformable systems, Nauka, Moscow, (1975).
Google Scholar
[7]
S. B. Yazyev, Stability of rods at creep taking into account initial imperfections: dissertation of candidate of technical sciences, Rostov-on-Don, (2010).
Google Scholar
[8]
B. M. Yazyev, V. I. Andreev, Buckling of longitudinally compressed rods of variable stiffness at creep, Inženernyj vestnik Dona. 4 (2012).
Google Scholar
[9]
Y. V. Egorov, On the Lagrange problem about the strongest colon, Rapport Interne. 02-16 (2002) 1-7.
Google Scholar
[10]
H. H. Bleich, Nonlinear creep deformations of columns of rechtangular cross section, Journ. of Appl. Mech. Dec., (1959).
Google Scholar
[11]
V. I. Andreev, A. S. Chepurnenko, B. M. Yazyev, Energy method in the calculation stability of compressed polymer rods considering creep, Advanced Materials Research. 1004-1005 (2014) 257-260.
DOI: 10.4028/www.scientific.net/amr.1004-1005.257
Google Scholar
[12]
V. I. Andreev, B. M. Yazyev, A. S. Chepurnenko, On the bending of a thin polymer plate at nonlinear creep, Advanced Materials Research. 900 (2014) 707-710.
DOI: 10.4028/www.scientific.net/amr.900.707
Google Scholar
[13]
A.S. Chepurnenko, B.M. Yazyev, A.A. Savchenko, Calculation for the Circular Plate on Creep Considering Geometric Nonlinearity, Procedia Engineering. 150 (2016) 1680–1685.
DOI: 10.1016/j.proeng.2016.07.150
Google Scholar
[14]
L.R. Mailyan, A.S. Chepurnenko, A. Ivanov, Calculation of prestressed concrete cylinder considering creep of concrete, Procedia Engineering. 165 (2016) 1853-1857.
DOI: 10.1016/j.proeng.2016.11.933
Google Scholar
[15]
A.E. Dudnik, A.S. Chepurnenko, S.V. Litvinov, Determining the rheological parameters of polyvinyl chloride, with change in temperature taken into account, International Polymer Science and Technology. 44 (2017) 30-33.
DOI: 10.1177/0307174x1704400109
Google Scholar
[16]
A.S. Chepurnenko, A.A. Savchenko, S.B. Yazyeva, Calculation of a three-layer plate by the finite element method taking into account the creep of the filler, MATEC Web of Conferences. 129 (2017) 05008.
DOI: 10.1051/matecconf/201712905008
Google Scholar
[17]
A.S. Chepurnenko, N.V. Neumerzhitskaya, M.S. Turko, Finite Element Modeling of the Creep of Shells of Revolution Under Axisymmetric Loading, International Scientific Conference Energy Management of Municipal Transportation Facilities and Transport EMMFT 2017. Advances in Intelligent Systems and Computing. 692 (2017).
DOI: 10.1007/978-3-319-70987-1_86
Google Scholar
[18]
A. S. Chepurnenko, V.V. Ulianskaya, S.B. Yazyev, I.M. Zotov, Calculation of wooden beams on the stability of a flat bending shape enhancement, MATEC Web of Conferences. 196 (2018) 01003.
DOI: 10.1051/matecconf/201819601003
Google Scholar