Numerical Studies for the Effects of Viscoelastic Constitutive Parameters on the Extrudate Swell of Plastic Micro-Tubes

Abstract:

Article Preview

The effects of four difference viscoelastic constitutive parameters, i.e., viscosity, relaxation time, ε and ξ on the extrudate swell of plastic micro-tubes were studied by using the numerical method. Numerical results show that the extrudate swell of plastic micro-tube increases with the increase of the relaxation time, but decreases with the increase of ε and ξ. In addition, the extrudate swell ratio of plastic micro-tube is not changed with the increase of the viscosity of melt. To ascertain the effect of four different viscoelastic constitutive parameters on the extrudate swell of plastic micro-tube, the physical field distributions, i.e., flow velocity, shear rate, shear stress, and first normal stress difference distributions of melt were obtained, respectively. Results show that the extrudate swell phenomenon of plastic micro-tube is closely dependent on the elastic energy storage of melt induced by the above mentioned physical field distributions, especially at the outlet of die.

Info:

Periodical:

Edited by:

Xiao Hong Zhu, Wenlong Cheng and Li Lu

Pages:

19-23

Citation:

Z. Ren et al., "Numerical Studies for the Effects of Viscoelastic Constitutive Parameters on the Extrudate Swell of Plastic Micro-Tubes", Materials Science Forum, Vol. 932, pp. 19-23, 2018

Online since:

September 2018

Export:

Price:

$38.00

* - Corresponding Author

[1] Z. Ren, X. Y. Huang and H. S. Liu, IOP Conference Series: Mater. Sci. Eng. 137 (2016), 1.

[2] Z. Ren and X. Y. Huang, IOP Conference Series: Mater. Sci. Eng. 213 (2017), 1.

[3] V. K. Konaganti, M. Ansari, E. Mitsoulis, S. G. Hatzikiriakos, AIP Publishing LLC 1843 (2017), 127.

[4] Z. Ren and X. Y. Huang, IOP Conference Series: Mater. Sci. Eng. 207 (2017), 1.

[5] Y. C. Kim, K. S. Yang and C. Choi, J. Appl. Polym. Sci. 70 (2015), 2187.

[6] I. B. Kazatchkov, S. G. Hatzikiriakos and C. W. Stewart, Polym. Eng. Sci. 35 (1995), 1864.

[7] K. L. Snyder, R. Kram and J. S. Gottschall, J.Exp. Bio. 215 (2012), 2283.

[8] T. Hirai, S. Tsukuma, T. Fujii, T. Azuma, Bulletin of the Jsme 21 (2008), 1669.

[9] E. Narimissa, A. Rahman, R. K. Gupta, N. Kao and S. N. Bhattacharya, Polym. Eng. Sci. 54 (2014), 1300.

[10] A. Allal and B. Vergnes, J. Non-Newtonian Fluid Mech. s167–168 (2012), 46.

[11] E. Miller, S. J. Lee and J. P. Rothstein, Rheol. Acta 45 (2006), 943.

[12] M. M. Dumoulin, J. Macromol. Sci. D 23 (1984), 193.

[13] N.P. Thien and R.I. Tanner, J. Non-Newtonian Fluid Mech. 2 (1997), 353.