Effect of Molding Processing on Properties of YAG Porous Ceramics via Dry Pressing Molding Method

Article Preview

Abstract:

YAG materials have a number of unique properties, the application is very extensive. In order to improving the properties of YAG porous materials, the effect of forming processing on the properties of YAG porous ceramics is investigated. Through the results and analysis, the conclusions showed that the porosity of YAG porous ceramics gradually decreased with the molding pressure increases, and the compressive strength of YAG porous ceramics shows a rising trend. The size and number of pores in the microstructure are reduced with increasing the forming pressure, there are inherently many voids in the YAG porous ceramics body at low forming pressures. The porosity of YAG porous ceramic decreases with the increase of dwell time, however, the process of extending from 5 min to 10 min is much faster than the rate of descending from 10 min to 15 min. The size and number of pores in the microstructure are reduced with extending the holding pressure time, which also makes YAG porous ceramics pose the higher mechanical strength. Through the analysis of the results, when the forming pressure is 10MPa, the porosity of YAG porous ceramics is 41.11% and the compressive strength is 5.8MPa, the porosity and compressive strength of YAG porous ceramics is better.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

134-139

Citation:

Online since:

October 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Kraxner, J. Chovanec, K. Haladejova, I. Petrikova, D. Galusek, Hollow polycrystalline YAG microspheres by flame synthesis, Mater. Letts. 204 (2017) 181-183.

DOI: 10.1016/j.matlet.2017.05.108

Google Scholar

[2] R. Marder, C. Estournes, G. Chevallier, Spark and plasma in spark plasma sintering of rigid ceramic nanoparticles:A model system of YAG, J. Eur. Ceram. Soc. 35 (2015) 211-218.

DOI: 10.1016/j.jeurceramsoc.2014.08.001

Google Scholar

[3] V. Amarantov, N.M. Khamaletdinova, R.P Yavetskiy, Colloid chemical properties of binary sols as precursors for YAG optical ceramics, Ceram. Int. 42 (2016) 17571-17580.

DOI: 10.1016/j.ceramint.2016.08.071

Google Scholar

[4] S. Hu, C. Lu, X. Liu, Z Xu, Optical temperature sensing based on the luminescence from YAG:Pr transparent ceramics, Optic. Mater. 60 (2016) 394-397.

DOI: 10.1016/j.optmat.2016.08.026

Google Scholar

[5] A. Katz, E. Barraud, S. Lemonnier, E. Sorrel, A. Leriche, Role of LiF additive on spark plasma sintered transparent YAG ceramics, Ceram. Int. 43 (2017) 15626-15634.

DOI: 10.1016/j.ceramint.2017.08.119

Google Scholar

[6] H.M. Wang, Z.Y. Huang, J.S. Jiang, Unique mechanical properties of nano-grained YAG transparent ceramics compared with coarse-grained partners, Mater. Design. 105 (2016) 9-15.

DOI: 10.1016/j.matdes.2016.04.094

Google Scholar

[7] A. Poulia, P.M. Sakkas, D.G. Kanellopoulou, G. Sourkouni, C. Legros, Chr. Argirusis, Preparation of metal–ceramic composites by sonochemical synthesis of metallic nano-particles and in-situ decoration on ceramic powders, Ultrason. Sonochem. 31 (2016).

DOI: 10.1016/j.ultsonch.2016.01.031

Google Scholar

[8] J.H Xu, K. Bandyopadhyay, D. Jung, Experimental investigation on the correlation between nano-fluid characteristics and thermal properties of Al2O3 nano-particles dispersed in ethylene glycol-water mixture, Int. J. Heat Mass Trans. 94 (2016).

DOI: 10.1016/j.ijheatmasstransfer.2015.11.056

Google Scholar

[9] J.Y. Xu, B.L. Zou, S.Y. Tao, M.X. Zhang, X.Q. Cao, Fabrication and properties of Al2O3-TiB2-TiC/Al metal matrix composite coatings by atmospheric plasma spraying of SHS powders, J.Alloy. Compd. 672 (2016) 251-259.

DOI: 10.1016/j.jallcom.2016.02.116

Google Scholar

[10] J.G. Song, F. Wang, M.H. Xu, Effect of synthesis conditions on the particle size and morphology of YAG powder, J. Ceram. Process. Res. 13 (2012) 154-157.

Google Scholar

[11] T.Y. Zhou, L. Zhang, S. Wei, L.X. Wang, Q.T. Zhang, MgO assisted densification of highly transparent YAG ceramics and their microstructural evolution, J. Eur. Ceram. Soc. 38 (2018) 687-693.

DOI: 10.1016/j.jeurceramsoc.2017.09.017

Google Scholar

[12] G.Q. Xie, D.V.L. Luzgin, F. Wakai, H. Kimura, A. Inoue, Microstructure and properties of ceramic particulate reinforced metallic glassy matrix composites fabricated by spark plasma sintering, Mater. Sci. Eng. B 148 (2008) 77-81.

DOI: 10.1016/j.mseb.2007.09.027

Google Scholar

[13] M.H. Xu, J.G Song, D.M. Du, F. Wang, Y.L Li, G.C Ji, F. Chen, The mechanism of controlling pore microstructure for YAG porous ceramics, Key Eng. Mater. 680 (2016) 216-219.

DOI: 10.4028/www.scientific.net/kem.680.216

Google Scholar

[14] J.Z. Zhao, Y. Li, Y. Wu, S. Lv, K. Lu, Microstructure of TiO2 porous ceramics by freeze casting of nanoparticle suspensions, Ceram. Int. 43 (2017) 14593-14598.

DOI: 10.1016/j.ceramint.2017.06.134

Google Scholar

[15] L.C. Hwa, S. Rajoo, A.M. Noor, N. Ahmad, M.B. Uday, Recent advances in 3D printing of porous ceramics: A review, Curr. Opin. Solid State Mater. Sci. 21 (2017) 323-347.

DOI: 10.1016/j.cossms.2017.08.002

Google Scholar

[16] M. Rahmani, O. Mirzaee, M. Tajally, The effects of pH and excess Al3+ content on the microstructure and phase evolution of YAG polycrystals, Ceram. Int. 43 (2017)12563-12571.

DOI: 10.1016/j.ceramint.2017.06.131

Google Scholar

[17] X.H. Su, J. Zhou, G. Bai, Low temperature synthesis and characterization of YAG nanopowders by polyacrylamide gel method, Ceram. Int. 42 (2016) 17497-17502.

DOI: 10.1016/j.ceramint.2016.08.058

Google Scholar

[18] S. Bera, C.D. Nie, M.G. Soskind, Growth and lasing of single crystal YAG fibers with different Ho3+ concentrations, Optic. Mater. 75 (2018) 44-48.

DOI: 10.1016/j.optmat.2017.09.048

Google Scholar