Effect of the Adjuvants on the Properties of Superfine SnO2 Powders

Article Preview

Abstract:

Ultrafine SnO2 is a new type of material, in the field of solar cells and semiconductors have a lot of use. To get different morphology and different properties of tin oxide powder material, making more applications in the field, the effect of the adjuvants on the properties of superfine SnO2 powders were distigated. Through the analysis of experimental results, the conclusions are shown the stronger the alkalinity of the auxiliary agent, the larger the grain size of the obtained particles and the more uniform the particles. When the molar ratio of salt to alkali is more than 1: 4, the amount of alkali is gradually reduced, the particle size is small, the morphology is not uniform and easy to agglomerate. When the molar ratio of salt to alkali is 1: 4, the smaller particle size is shown, the appearance morphology is uneven. The longer the reaction time, the more complete the grain, the more uniform the morphology. Under the condition of SnCl4 concentration of 0.05 mol/L, reaction time is 4 days, salt and alkali molar ratio is 1: 4, holding temperature is 200 °C, the auxiliary agent is NaOH, the size, shape and properties of synthesized SnO2 are the better.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

35-40

Citation:

Online since:

October 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Ling, J. G. Song, X.Y. Chen, J. Yang, Comparison of ZnO and TiO2 nanowires for photoanode of dye-sensitized solar cells, J. Alloy. Compd. 546 (2013) 307-313.

DOI: 10.1016/j.jallcom.2012.08.030

Google Scholar

[2] J. G. Song, L. Hua, Q. Shen, Effect of pH value on the properties of SnO2 nano-cystalline for dye sensitized solar cells, Key Eng. Mater. 633 (2015) 273-276.

DOI: 10.4028/www.scientific.net/kem.633.273

Google Scholar

[3] K. Fan, T.Y. Peng, J.N. Chen, A simple preparation method for quasi-solid-state flexible dye-sensitized solar cells by using sea urchin-like anatase TiO2 microspheres, J. Power Sources. 222 (2013) 38-44.

DOI: 10.1016/j.jpowsour.2012.08.054

Google Scholar

[4] F. Yang, F. Zhang, E.Z. Wang, Research development of organic-inorganic perovskite solar cells, Powder Metal Indu. 26 (2016) 64-68.

Google Scholar

[5] Y. Chen, H. Li, Q. Ma, Z.M. Zhang, J.P. Wang, G. Wang, A novel electrospun approach for highly-dispersed carambola-like SnO2/C composite microparticles with superior photocatalytic performance, Mater. Lett.  202 (2017)17-20.

DOI: 10.1016/j.matlet.2017.05.086

Google Scholar

[6] T.T. Duong, H.J. Choi, Q.J. He, Enhancing the efficiency of dye sensitized solar cells with an SnO2 blocking layer grown by nanocluster deposition, J. Alloy. Compd. 561 (2013) 206-210.

DOI: 10.1016/j.jallcom.2013.01.188

Google Scholar

[7] D.X. Cao, H.Y. Gu, C. Xie, B. Li, H.K Wang, Binding SnO2 nanoparticles onto carbon nanotubes with assistance of amorphous MoO3 towards enhanced lithium storage performance, J. Colloid Interf. Sci.  504 (2017) 230-237.

DOI: 10.1016/j.jcis.2017.05.056

Google Scholar

[8] N. Liu, K. Lee, P. Schmuki, Small diameter TiO2 nanotubes vs. nanopores in dye sensitized solar cells, Electrochem Comm. 15 (2012) 1-4.

DOI: 10.1016/j.elecom.2011.11.003

Google Scholar

[9] J. Wang, C. Wang, Y.Q. Kang, The effects of annealing treatment on microstructure and contact resistance properties of cold sprayed Ag-SnO2 coating, J. Alloy. Compd. 714 (2017) 698-703.

DOI: 10.1016/j.jallcom.2017.04.227

Google Scholar

[10] G.M. Aponsu, T.R. Wijayarathna, I.K. Perera, The enhancement of photovoltaic parameters indye-sensitized solar cells of nano-crystalline SnO2 by incorporating with large SrTiO3 particles, Spectrochim Acta A. 109 (2013) 37-41.

DOI: 10.1016/j.saa.2013.02.016

Google Scholar

[11] O. Almamoun, S.Y Ma, Effect of Mn doping on the structural, morphological and optical properties of SnO2 nanoparticles prepared by Sol-gel method, Mater. Lett.  199 (2017) 172-175.

DOI: 10.1016/j.matlet.2017.04.075

Google Scholar

[12] W. Sun, X.H Sun, X.Z. Zhao, A low cost mesoporous carbon/SnO2/TiO2 nanocomposite counter electrode for dye-sensitized solar cells, J. Power Sources 201 (2012) 402-407.

DOI: 10.1016/j.jpowsour.2011.10.097

Google Scholar

[13] P.N. Kumar, J.S. Mary, V. Chandrakala, W. J. Jeyarani, J. M. Shyla, Investigation of superior electro-optical properties of SnO2/SiO2 nanocomposite over its individual counterpart SnO2 nanoparticles, Mater. Chem. Phys. 193 (2017) 234-243.

DOI: 10.1016/j.matchemphys.2017.02.039

Google Scholar

[14] J. Martikainen, A. Penttila, M. Gritsevich, H. Lindqvist, K. Muinonen, Spectral modeling of meteorites at UV-vis-NIR wavelengths, J. Quant. Spect. Rad. Trans. 204 (2018) 144-151.

DOI: 10.1016/j.jqsrt.2017.09.017

Google Scholar

[15] N.H. Al-Hardan, M.A. Abdul Hamid, N.M. Ahmed, R. Shamsudin, N.K. Othman, Ag/ZnO/p-Si/Ag heterojunction and their optoelectronic characteristics under different UV wavelength illumination, Sens. Actu. A: Phys. 242 (2016) 50-57.

DOI: 10.1016/j.sna.2016.02.036

Google Scholar

[16] K.X. Hu, P.H. Wang, L. Chen, Z.X. Zhao Q.K. Wang,Study on the photoelectric conversion efficiency of solar cells with light trapping arrays, Int. J. Light Elect. Opt. 135 (2017) 313-319.

DOI: 10.1016/j.ijleo.2017.01.084

Google Scholar

[17] X.F. Fang, X.J Men, H.B. Chen Y.M. Zhang W.P. Qin, Fabrication and photoelectric properties of bio-inspired honeycomb film based on semiconducting polymer, J. Colloid. Interf. Sci. 512 (2018) 1-6.

DOI: 10.1016/j.jcis.2017.10.007

Google Scholar