Extraction of Nanocellulose from Dried Rubber Tree Leaves by Acid Hydrolysis

Article Preview

Abstract:

Nanocellulose were extracted from dried rubber tree leaves by acid hydrolysis. The dried rubber tree leaves were treated by the alkali and bleaching process to obtain the bleached cellulose powder. Acid hydrolysis from sulfuric acid (H2SO4) at different concentrations (35 wt.% to 65 wt.%) was performed to obtain the nanocellulose. The extracted nanocellulose were characterized by the transmission electron microscope (TEM), atomic force microscope (AFM), Fourier transform infrared spectroscopy (FTIR) and X-ray powder diffraction (XRD). The produced nanocellulose exhibited rod-like shaped cellulose nanocrystals (CNCs), however, the CNCs structure and crystallinity depended on the H2SO4 concentration. It was revealed that the higher H2SO4 concentration led to the shorter CNCs lengths. In addition, the crystallinity was generally found to increase with increasing acid concentration treatments but slightly reduce at 65 wt.% of H2SO4.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

37-41

Citation:

Online since:

October 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Dufresne: Curr. Opin. Colloid Interface Sci. Vol.29 (2017), pp.1-8.

Google Scholar

[2] M. Nasir, R. Hashim, O. Sulaiman and M. Asim in: Cellulose-Reinforced Nanofibre Composites, edited by M. Jawaid, S. Boufi and A. Khalil H.P.S, volume 11 of Woodhead Publishing Series in Composites Science and Engineering, pp.261-276.

DOI: 10.1016/b978-0-08-100957-4.00011-5

Google Scholar

[3] A.L. Pereira, D.M. Nascimento, M.S. Filho, J.S. Morais, N.F. Vasconcelos, J.P. Feitosa, A.S. Brígida and M. F. Rosa: Carbohydr. Polym. Vol.112 (2014), pp.165-172.

Google Scholar

[4] J. Bras, M. L. Hassan, C. Bruzesse, E. A. Hassan, N. A. El-Wakil and A. Dufresne: Ind. Crops Prod. Vol.32 (2010), pp.627-633.

DOI: 10.1016/j.indcrop.2010.07.018

Google Scholar

[5] C. Liu, B. Li, H. Du, D. Lv. Y. Zhang, G. Yu, X. Mu and H. Peng: Carbohydr. Polym. Vol.151 (2016), pp.716-724.

Google Scholar

[6] L. Segal, J. J. Creely, A. E. Martin and C. M. Conrad: Text. Res. J. Vol.29 (1959), pp.786-794.

Google Scholar

[7] Y. Chen, Q. Wu, B. Huang, M. Huang and X. Ai: Bioresources. Vol.10 (2015), pp.684-696.

Google Scholar

[8] R. M. Sheltami, I. Abdullah, I. Ahmad, A. Dufresne and H. Kargarzadeh: Carbohydr. Polym. Vol.88 (2012), pp.772-779.

Google Scholar

[9] N. Rambabu, S. Panthapulakkal, M. Sain and A.K. Dali: Ind. Crops Prod. Vol.83 (2016), pp.746-754.

Google Scholar

[10] S. Qian, H. Zhang and K. Sheng: Bioresources. Vol.12 (2017), pp.419-433.

Google Scholar

[11] D. Pasquini, E. M. Teixeira, A. S. Curvelo, M. N. Belgacem and A. Dufresne: Ind. Crops Prod. Vol.32 (2010) pp.486-490.

Google Scholar

[12] I. A. Sacui, R. C. Nieuwendaal, D. J. Burnett, S. J. Stranick, M. Jorfi, C. Weder, E. J. Foster, R. T. Olsson and J. W. Gilman: ACS Appl. Mater. Interfaces. Vol.6 (2014), pp.6127-6138.

DOI: 10.1021/am500359f

Google Scholar