Synthesis of Electrospun Titania Nanofibers for Thermal Lens Study in Heat Transport Applications

Article Preview

Abstract:

Thermal lens spectrometry (TLS) technique was used to obtain the thermal diffusivity of electrospun Titania nanofibers (TiO2), with average diameter size of 50-80 nm, in water. TiO2 nanofibers have been successfully prepared by sol-gel and electrospining techniques. TLS provides reliable alternative to measure the thermal diffusivities of semitransparent materials and low thermal diffusivities. The results show that the nanofluid thermal diffusivity increases with the presence of nanofibers. Complementary techniques: scanning electron microscopy (SEM) and X-ray energy dispersive spectroscopy (EDS) were employed to characterize the nanofibers morphology, average fiber diameter and chemical composition, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

58-62

Citation:

Online since:

October 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Boudot, M. Kühn, M. Kühn-Kauffeldt and J. Schein: Mat. Sci. Eng. C Vol. 74 (2017), p.508.

Google Scholar

[2] N. Abdullah and S.K. Kamarudin: J. Power Sources Vol. 278 (2015), p.109.

Google Scholar

[3] H. Cai, W. Mu, W. Liu, X. Zhang and Y. Deng: Inorg. Chem. Commun. Vol. 51 (2015), p.71.

Google Scholar

[4] D. Giolando: Sol. Energy Vol. 97 (2013), p.195.

Google Scholar

[5] J. Patil, S. Mali, A. Kamble, C. Hong, J. Kim and P. Patil: Appl. Surf. Sci. Vol. 423 (2017), p.641.

Google Scholar

[6] J. Lyons, F.K. Ko, Encyclopedia of Nanoscience and Nanotechnology, edited by H. S. Nalwa. Volume 6. American Scientific Publishers (2004).

Google Scholar

[7] Y. S. Touloukian,‎ R. W. Powell,‎ C. Y. Ho and M. C. Nicolaou: Thermal Diffusivity (Thermophysical Properties of Matter) (Springer, USA 1973).

Google Scholar

[8] D. Kliger: Ultrasensitive Laser Spectroscopy (Academic Press, UK 1963).

Google Scholar

[9] M.P. Pileni: J. Phys. Chem. C Vol. 111 (2207), p.9019.

Google Scholar

[10] P.R.B. Pedreira, L. Hirsch, J.R.D. Pereira, A.N. Medina, A.C. Bento, and M.L. Baesso: Rev. Sci. Instrum. Vol. 74 (2003), p.808.

Google Scholar

[11] R. Gutiérrez Fuentes, J. F. Sánchez Ramírez, J. L. Jiménez Pérez, J. A. Pescador Rojas, E. Ramón Gallegos and A. Cruz Orea: Int. J. Thermophys. Vol. 28 (2007), p.1048.

DOI: 10.1007/s10765-007-0225-8

Google Scholar

[12] J. Shen, R.D. Lowe and R. D. Snook: Chem. Phys. Vol. 165 (1992), p.385.

Google Scholar

[13] J.F. Sánchez Ramírez, J.L. Jiménez Pérez, U. Pal, R. Gutiérrez Fuentes, J.A. Pescador Rojas and A. Cruz Orea: Rev. Mex. Fis. Vol. S53 (2007), p.13.

Google Scholar

[14] D. Li and Y. Xia: Adv. Mat. 16 (2004), p.1151.

Google Scholar

[15] J.L. Jiménez Pérez, J.F. Sánchez Ramírez, A. Cruz Orea, R. Gutiérrez Fuentes, D. Cornejo Monrroy and G.A. López Muñoz: J. Nano Res. Vol. 9 (2010), p.55.

DOI: 10.4028/www.scientific.net/jnanor.9.55

Google Scholar

[16] D. Cahill, P. Braun, Chen, G., D. Clarke, S. Fan, K. Goodson, P. Keblinski, W. King, G. Mahan, A. Majumdar, H. Maris, S. Phillpot, E. Pop and L. Shi: Appl- Phys. Rev. Vol. 1 (2014), p.1.

DOI: 10.1063/1.4832615

Google Scholar