Immobilization of Laccase from T. versicolor on Nanofiber Matrix

Article Preview

Abstract:

Prepared nanofiber matrices based on polyamide 6 and polyamide 6/chitosan with numerous amine groups were tested on enzyme immobilization. Laccase from Trametes versicolor was immobilized on both nanofiber sheets either via glutaraldehyde and hexamethylenediamine activation, or via adsorption followed by glutaraldehyde crosslinking. Both types of the attachment were successful, however, the adsorption method provided immobilized laccase with enhanced operational stability.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

123-128

Citation:

Online since:

October 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Clara, B. Strenn, O. Gans, E. Martinez, N. Kreuzinger, and H. Kroiss, Removal of selected pharmaceuticals, fragrances and endocrine disrupting compounds in a membrane bioreactor and conventional wastewater treatment plants,, Water Res., vol. 39, no. 19, p.4797–4807, Nov. (2005).

DOI: 10.1016/j.watres.2005.09.015

Google Scholar

[2] M.-K. Kim and K.-D. Zoh, Occurrence and removals of micropollutants in water environment,, Environ. Eng. Res., vol. 21, no. 4, p.319–332, Nov. (2016).

Google Scholar

[3] E. J. Toone, Advances in Enzymology and Related Areas of Molecular Biology, Volume 75: Protein Evolution. John Wiley & Sons, (2010).

Google Scholar

[4] B. Chefetz, Y. Chen, and Y. Hadar, Purification and Characterization of Laccase fromChaetomium thermophilium and Its Role in Humification,, Appl. Environ. Microbiol., vol. 64, no. 9, p.3175–3179, Sep. (1998).

DOI: 10.1128/aem.64.9.3175-3179.1998

Google Scholar

[5] V. Madhavi and S. S. Lele, LACCASE: PROPERTIES AND APPLICATIONS,, BioResources, vol. 4, no. 4, p.1694–1717, Aug. (2009).

Google Scholar

[6] W. Tischer and F. Wedekind, Immobilized Enzymes: Methods and Applications,, in Biocatalysis - From Discovery to Application, P. D. W.-D. Fessner, A. Archelas, D. C. Demirjian, R. Furstoss, H. Griengl, K.-E. Jaeger, E. Morís-Varas, R. Öhrlein, M. T. Reetz, J.-L. Reymond, M. Schmidt, S. Servi, P. C. Shah, W. Tischer, and F. Wedekind, Eds. Springer Berlin Heidelberg, 1999, p.95.

DOI: 10.1007/3-540-68116-7

Google Scholar

[7] M. Maryšková, I. Ardao, C. A. García-González, L. Martinová, J. Rotková, and A. Ševců, Polyamide 6/chitosan nanofibers as support for the immobilization of Trametes versicolor laccase for the elimination of endocrine disrupting chemicals,, Enzyme Microb. Technol., vol. 89, p.31–38, Jul. (2016).

DOI: 10.1016/j.enzmictec.2016.03.001

Google Scholar

[8] L. N. Nguyen et al., Continuous biotransformation of bisphenol A and diclofenac by laccase in an enzymatic membrane reactor,, Int. Biodeterior. Biodegrad., vol. 95, p.25–32, Nov. (2014).

Google Scholar

[9] M. de Cazes et al., Design and optimization of an enzymatic membrane reactor for tetracycline degradation,, Catal. Today, vol. 236, p.146–152, Nov. (2014).

DOI: 10.1016/j.cattod.2014.02.051

Google Scholar

[10] M. Fernández-Fernández, M. Á. Sanromán, and D. Moldes, Recent developments and applications of immobilized laccase,, Biotechnol. Adv., vol. 31, no. 8, p.1808–1825, Dec. (2013).

DOI: 10.1016/j.biotechadv.2012.02.013

Google Scholar

[11] S. Yang, F. I. Hai, L. D. Nghiem, L. N. Nguyen, F. Roddick, and W. E. Price, Removal of bisphenol A and diclofenac by a novel fungal membrane bioreactor operated under non-sterile conditions,, Int. Biodeterior. Biodegrad., vol. 85, p.483–490, Nov. (2013).

DOI: 10.1016/j.ibiod.2013.03.012

Google Scholar

[12] R. R. Nair, P. Demarche, and S. N. Agathos, Formulation and characterization of an immobilized laccase biocatalyst and its application to eliminate organic micropollutants in wastewater,, New Biotechnol., vol. 30, no. 6, p.814–823, Sep. (2013).

DOI: 10.1016/j.nbt.2012.12.004

Google Scholar

[13] G. Hommes et al., Production of a robust nanobiocatalyst for municipal wastewater treatment,, Bioresour. Technol., vol. 115, p.8–15, Jul. (2012).

Google Scholar

[14] G. Songulashvili, G. A. Jimenéz-Tobón, C. Jaspers, and M. J. Penninckx, Immobilized laccase of Cerrena unicolor for elimination of endocrine disruptor micropollutants,, Fungal Biol., vol. 116, no. 8, p.883–889, Aug. (2012).

DOI: 10.1016/j.funbio.2012.05.005

Google Scholar

[15] P. Galliker, G. Hommes, D. Schlosser, P. F.-X. Corvini, and P. Shahgaldian, Laccase-modified silica nanoparticles efficiently catalyze the transformation of phenolic compounds,, J. Colloid Interface Sci., vol. 349, no. 1, p.98–105, Sep. (2010).

DOI: 10.1016/j.jcis.2010.05.031

Google Scholar

[16] I. Matijošytė, I. W. C. E. Arends, S. de Vries, and R. A. Sheldon, Preparation and use of cross-linked enzyme aggregates (CLEAs) of laccases,, J. Mol. Catal. B Enzym., vol. 62, no. 2, p.142–148, Feb. (2010).

DOI: 10.1016/j.molcatb.2009.09.019

Google Scholar

[17] H. Cabana, C. Alexandre, S. N. Agathos, and J. P. Jones, Immobilization of laccase from the white rot fungus Coriolopsis polyzona and use of the immobilized biocatalyst for the continuous elimination of endocrine disrupting chemicals,, Bioresour. Technol., vol. 100, no. 14, p.3447–3458, Jul. (2009).

DOI: 10.1016/j.biortech.2009.02.052

Google Scholar

[18] D. S. Tawfik, Directed enzyme evolution: Screening and selection methods. Methods in molecular biology Vol. 230 edited by Frances H. Arnold and George Georgiou. 2003.,, Protein Sci. Publ. Protein Soc., vol. 13, no. 10, p.2836–2837, Oct. (2004).

DOI: 10.1002/cbic.200490009

Google Scholar

[19] T. Hassani, S. Ba, and H. Cabana, Formation of enzyme polymer engineered structure for laccase and cross-linked laccase aggregates stabilization,, Bioresour. Technol., vol. 128, p.640–645, Jan. (2013).

DOI: 10.1016/j.biortech.2012.10.058

Google Scholar

[20] R. Xu, R. Tang, Q. Zhou, F. Li, and B. Zhang, Enhancement of catalytic activity of immobilized laccase for diclofenac biodegradation by carbon nanotubes,, Chem. Eng. J., vol. 262, p.88–95, Feb. (2015).

DOI: 10.1016/j.cej.2014.09.072

Google Scholar

[21] Y. Liu et al., Immobilization of laccase on magnetic bimodal mesoporous carbon and the application in the removal of phenolic compounds,, Bioresour. Technol., vol. 115, p.21–26, Jul. (2012).

Google Scholar