Frequency Selective Surface for Infrared Transmission Suppression at Atmospheric Window

Article Preview

Abstract:

A double screen infrared frequency selective surface (FSS) with dual transmission stopbands was proposed and numerically investigated. Simulation results show that the infrared transmittance of the structure is lower than 10% in mid-infrared band (3~5 μm) and far-infrared band (8 ~14 μm).This structure is polarization insensitive to the incident electromagnetic waves. For a wide range of incident angles from 0° to 60°, the infrared transmittance of the structure is still lower than 25% in the band of interest. Compared with black body, the radiation ratio of structure is lower in the MWIR and LWIR ranges. The structure provide the potential applications for infrared stealth.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

89-95

Citation:

Online since:

October 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Rogalski A, Infrared Phys. Technol 54(2011), p.136.

Google Scholar

[2] Smith E P G, Gallagher A M, Kostrzewa T J  2010 Conference on Optoelectronic and Microelectronic Materials and Devices, Canberra, ACT, p.15.

Google Scholar

[3] Lin W W, Jin X U, Xu S L, Laser & Infrared 36(2006), p.840.

Google Scholar

[4] Zhang X D, Li R G, Liu L , He Y L, Laser & infrared 40(2010) ,p.801.

Google Scholar

[5] Martı́N-Palma R J, Vázquez L, Martı́Nez-Duart J M, Solar. Energy Mater.Sol. Cells 53(1998), p.55.

Google Scholar

[6] Schaefer C, Bräuer G, Szczyrbowski J, Surf. Coat Technol 93(1997),p.37.

Google Scholar

[7] Yu H, Xu G, Shen X, Prog.Org.Coat 66(2009), p.161.

Google Scholar

[8] Yan X, Xu G, Mater.Sci.Eng., B 166(2010), p.152.

Google Scholar

[9] Yuan L, Weng X, Du W, J.Alloys & Compounds 583(2014),p.492.

Google Scholar

[10] Wu G, Yu D,Prog.Org.Coat 76(2013),p.107.

Google Scholar

[11] Scalora M, Bloemer M J, Pethel A S, J.Appl.Phys 83(1998),p.2377.

Google Scholar

[12] Fleming J G, Lin S Y, Elkady I, Nat 417 (2002), p.52.

Google Scholar

[13] Yu J, Shen Y, Liu X, J. Phys. Condens.Matter 16(2004), p.51.

Google Scholar

[14] Sakurai A, Matsuno Y, Opt. Mater. Express 7(2017), p.618.

Google Scholar

[15] Xinyu Liu, Willie J, Opt 4(2017), p.430.

Google Scholar

[16] Munk B.A.2000 Frequency Selective Surface: Theory and Design. (New York: wiley).

Google Scholar

[17] Ginn J, Shelton D, Krenz P, Lail B, Boreman G, Opt. Express 18(2010), p.4557.

DOI: 10.1364/oe.18.004557

Google Scholar

[18] D' A J, Tucker E, Raschke M B, Boreman G, Opt. Express 22(2014), p.16645.

Google Scholar

[19] B Monacelli, JB pryor, B.A. Munk, IEEE T Antenn Propaga 53(2005), p.745.

Google Scholar

[20] Yu M, Xu N X, Gao J S, Chin. Phys. B 24(2015), p.030701.

Google Scholar