Mathematical Formula to Determine Geometrical Dimensions of Electrode Metal Droplets Transferred with Short Circuits

Article Preview

Abstract:

A method is described to determine geometrical dimensions of electrode metal droplets depending on short circuit duration. It provides a quantitative evaluation of the electrode metal transfer and the energy impact on metal parts being welded. It is proved that using inverter power source decreases the size of droplets transferred to the welding pool by 24% in average if compared with a diode power source. It also reduces overheating of the droplets which improves efficiency of transferring chemical elements from the electrode to the weld metal.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-6

Citation:

Online since:

October 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Makarenko, V.D. Technological properties of pipeline assembly welding / V.D. Makarenko, R.V. Paliy, M.Yu. Mukhin et al.; / Ed. V.D. Makarenko. Moscow: OOO Nedra-Business Center, 2001. 118 p.

Google Scholar

[2] Makarenko, V.D. Features of manual arc welding of root joints of non-rotating joints of oil pipelines operated in Western Siberia / V.D. Makarenko, K.A. Muravyov, A.I. Kalyanov // Welding production. 2005. No. 12. P. 38-41.

DOI: 10.1533/wint.2006.3640

Google Scholar

[3] Gorpenyuk, V.N. On the relationship between changes in electrical parameters and defect formation in a welded seam / V.N. Gorpenyuk, V.E. Ponomarev // Proceedings of All-Union Conference on welding materials. Kiev: IES, 1983. P. 82-84.

Google Scholar

[4] Saraev Y.N., Chinakhov D.A., Iljyashchenko D.P., Kiselev A.S., Gordynets A.S. Investigation of the stability of melting and electrode metal transfer in consumable electrode arc welding using power sources with different dynamic characteristics. Welding International. 2017. Vol. 31. 10. pp.784-790.

DOI: 10.1080/09507116.2017.1343977

Google Scholar

[5] Lankin Yu.N. Stability parameters of manual metal arc welding // Automatic welding. 2011. 1. P. 7-15.

Google Scholar

[6] Criteria for assessing stability of direct current arc welding / I.K. Pokhodnya, I.I. Zaruba, V.E. Ponomarev and others // Automatic welding. 1989. 8. P. 1-4.

Google Scholar

[7] Lenivkin V.A., Dyurgerov I.G., Sagirov Kh. N. Technological properties of welding arc in shielding gases. Moscow: Mechanical Engineering, 1989. 264 p.

Google Scholar

[8] Milyutin V.S., Kataev R.F., Polukhin A.V. Estimation of mode stability at testing power sources for manual arc welding. Welding and diagnostics. 2014 No. 3 P. 32-38.

Google Scholar

[9] Milyutin, V.S. Method of objective evaluation of welding power sources output parameters / V.S. Milyutin, A.G. Sivoplyasov, D.E. Kostyuk // Welding production. 2004. No. 12. P. 15-22.

DOI: 10.1533/wint.2005.3462

Google Scholar

[10] Milyutin, V.S. Evaluation of process stability in testing power supplies for manual arc welding. V.S. Milyutin, A.V. Polukhin // Welding and diagnostics. 2012. No. 6. P. 30-37.

Google Scholar

[11] Ilyushenko, V.M. Comparative tests of welding-technological properties of inverter power sources / V.M. Ilyushenko, G.A. Butarakov et al. // Automatic welding. 2009. No.4. P. 42-45.

Google Scholar

[12] Zemskov, A.V. Dynamics of transfer processes in welding inverter rectifiers. Bardeen, D.A. Borisov, A.V. Zemskov // Practical power electronics. 2012. No. 3. P. 52-55.

Google Scholar

[13] Zemskov, A.V. Load characteristic of welding inverter rectifier. Bardin, A.V. Zemskov // Practical power electronics. 2013. No. 2. P. 52-55.

Google Scholar

[14] Zemskov, A.V. A new class of welding inverter rectifiers. Bardeen, D.A. Borisov, A.V. Zemskov, A.V. Pivkin // Electrical Engineering. 2012. No. 6. P. 60-64.

Google Scholar

[15] Slazak, B. Process Stability Evaluation of Manual Metal Arc Welding Using Digital Signals / B. Slazak, J. Slania, T. Węgrzyn, A. P. Silva // Materials Science Forum. 2013. Vol. 730–732. P. 847–852.

DOI: 10.4028/www.scientific.net/msf.730-732.847

Google Scholar

[16] Saraev, Y.N. Study of the stability of electrode metal melting and transfer in the process of consumable electrode welding powered by supplies with differing dynamic characteristics / Y.N. Saraev, D.A. Chinakhov, D.P. Il'yashchenko, A.S. Kiselev, A.S. Gardiner, and I.V. Raev // AIP Conf. Proc. 2016. № 1783 (020196).

DOI: 10.1063/1.4966490

Google Scholar

[17] Saraev, Y.N., Gladkovskiy, S.V., Veselova, V.E., Golikov, N.I. Improving the service properties of metal structures working in the conditions of low climatic temperatures by methods of adaptive pulsed-arc welding (2016).

DOI: 10.1080/09507116.2016.1154271

Google Scholar

[18] Pavlov, N.V., Kryukov, A.V., Zernin, E.A. Distribution of temperature fields in welding in a gas mixture with pulsed electrode wire feed (2012) Welding International, 26 (6), pp.483-484.

DOI: 10.1080/09507116.2011.606167

Google Scholar

[19] Shlyakhova, G., Danilov, V., Kuznetsov, M., Zernin, E., Kartashov, E. The distinctive feature of weld joints structure by adding the nanomodifying to the weld pool (2015) AIP Conference Proceedings, 1683, art. no. 020210.

DOI: 10.1063/1.4932900

Google Scholar

[20] Vaz, C.T., Bracarense, A.Q. The effect of the use of PTFE as a covered-electrode binder on metal transfer (2015) Soldagem e Inspecao, 20 (2), pp.160-170.

DOI: 10.1590/0104-9224/si2002.04

Google Scholar

[21] Bondarenko, O.F., Bondarenko, I.V., Safronov, P.S., Sydorets, V.M. Current and force control in micro resistance welding machines: Review and development (2013).

DOI: 10.1109/cpe.2013.6601173

Google Scholar

[22] Knyazkov, V.L. Improving efficiency of manual arc welding of pipelines / V.L. Knyazkov, A.F. Prince. Kemerovo: Publishing House GU KuzGTU, 2008. - 104 p.

Google Scholar

[23] Koritsky, G.G. On some forces acting on a droplet of electrode metal during welding / G.G. Koritsky, I.K. Walking // Automatic welding. 1971. No. 3. P. 11-14.

Google Scholar

[24] Makarenko, V.D. Calculation of kinetic characteristics of electrode droplets during their transfer through arc gap during coated electrodes welding / V.D. Makarenko, S.P. Shatilo // Welding production. 1999. No. 12. P. 6-10.

DOI: 10.1080/09507110009549214

Google Scholar

[25] Korn, G. Handbook on mathematics for scientists and engineers / G. Korn, T. Korn. Moscow: Science, 1968. 47 p.

Google Scholar

[26] Novozhilov, N.M. Basics of metallurgy of shielded arc welding / N.M. Novozhilov. Moscow: Mechanical Engineering, 1979. 231 p.

Google Scholar

[27] Erokhin, A.A. Basics of fusion welding. Physicochemical regularities / A.A. Erokhin. Mechanical Engineering,, 1973, 448 p.

Google Scholar