Ultra-Sensitive H2S Gas Sensor Based on WO3 Nanocubes with Low Operating Temperature

Article Preview

Abstract:

WO3 nanostructure with nanocube morphology was synthesized through acidification of Na2WO4·2H2O, which were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Moreover, the result of the present work implied that the sensor fabricated by nanocube WO3 could detect the level of 330 ppb H2S, which is much lower than the threshold limit value of 10 ppm. Compared with other results, the nanocube WO3 sensor shows higher sensitivity, excellent selectivity and faster response/recovery to H2S. Especially, the best operating temperature of this nanocube WO3 for H2S detection is 100 °C.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

133-140

Citation:

Online since:

November 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. F. Zhang, D. L. Mauzerall, T. Zhu, S. Liang, M. Ezzati, and J. V. Remais, Lancet, 2010, 375, 1110-1119.

DOI: 10.1016/s0140-6736(10)60062-1

Google Scholar

[2] X.B. Hu, Z.G. Zhu, C. Chen, T.Y. Wen, X.L. Zhao and L.L. Xie, Sensor Actuat B-Chem, 2017, 253, 809-817.

Google Scholar

[3] L. G. Teoh, Y. M. Hon, J. Shieh, W. H. Lai, and M. H. Hon, Sensor Actuat B-Chem,, 2003, 96(1), 219-225.

Google Scholar

[4] V. Kruefu, A. Wisitsoraat, A. Tuantranont, and S. Phanichphant, Sensor Actuat B-Chem, 2015, 215, 630-636.

Google Scholar

[5] I. Lee, S. J. Choi, K. M. Park, S. S. Lee, S. Choi, I. D. Kim, and C. O. Park, Sensor Actuat B-Chem, 2014, 197, 300-307.

Google Scholar

[6] N. S. Ramgir, C. P. Goyal, P. K. Sharma, U. K. Goutam, S. Bhattacharya, N. Datta, M. Kaur, A. K. Debnath, D. K. Aswal, and S. K. Gupta, Sensor Actuat B-Chem, 2013, 188, 525-532.

DOI: 10.1016/j.snb.2013.07.052

Google Scholar

[7] N. Datta, N. Ramgir, M. Kaur, M. Roy, R. Bhatt, S. Kailasaganapathi, A. K. Debnath, D. K. Aswal, and S. K. Gupta, Mater Chem Phys, 2012, 134(2-3), 851-857.

DOI: 10.1016/j.matchemphys.2012.03.080

Google Scholar

[8] N. R, K. N. Madhusoodanan, and V. S. Prasad, Int. J. Environ. Sci. Toxicol, 2014, 2, 55-63.

Google Scholar

[9] Y. H. Gui, F. H. Dong, Y. H. Zhang, Y. Zhang, and J. F. Tian, Mat Sci Semicon Proc, 2013, 16(6), 1531-1537.

Google Scholar

[10] I. M. Szilagyi, S. Saukko, J. Mizsei, A. L. Toth, J. Madarasz, and G. Pokol, Solid State Sci, 2010, 12(11), 1857-1860.

Google Scholar

[11] B. Zhang, J. D. Liu, S. K. Guan, Y. Z. Wan, Y. Z. Zhang, and R. F. Chen, J Alloy Compd, 2007, 439(1-2), 55-58.

Google Scholar

[12] Y. B. Shen, B. Q. Zhang, X. M. Cao, D. Z. Wei, J. W. Ma, L. J. Jia, S. L. Gao, B. Y. Cui, and Y. C. Jin, Sensor Actuat B-Chem, 2014, 193, 273-279.

Google Scholar

[13] W. T. Koo, S. J. Choi, N. H. Kim, J. S. Jang, and I. D. Kim, Sensor Actuat B-Chem, 2016, 223, 301-310.

Google Scholar

[14] P. V. Tong, N. D. Hoa, V. V. Quang, N. V. Duy, and N. V. Hieu, Sensor Actuat B-Chem, 2013, 183, 372-380.

Google Scholar

[15] X.B. Hu, Z.G. Zhu*, Z.H. Li, L.L. Xie, Y.H. Wu, Z.Y. Zheng, Sensor Actuat B-Chem, 2018, 264, 139-149.

Google Scholar

[16] C. Wang, X. Li, C. H. Feng, Y. F. Sun, and G. Y. Lu, Sensor Actuat B-Chem, 2015, 210, 75-81.

Google Scholar

[17] H. J. Xia, Y. Wang, F. H. Kong, S. R. Wang, B. L. Zhu, X. Z. Guo, J. Zhang, Y. M. Wang, and S. H. Wu, Sensor Actuat B-Chem, 2008, 134(1), 133-139.

Google Scholar

[18] L. You, X. He, D. Wang, P. Sun, Y. F. Sun, X. S. Liang, Y. Du, and G. Y. Lu, Sensor Actuat B-Chem, 2012, 173, 426-432.

Google Scholar

[19] C. Y. Lee, S. J. Kim, I. S. Hwang, and J. H. Lee, Sensor Actuat B-Chem, 2009, 142(1), 236-242.

Google Scholar

[20] F. H. Saboor, T. Ueda, K. Kamada, T. Hyodo, Y. Mortazavi, A. A. Khodadadi, and Y. Shimizu, Sensor Actuat B-Chem, 2016, 223, 429-439.

Google Scholar