Submerged Electrical Arc Discharge for Nanoparticles Fabrication Using Carbon-Based Electrodes

Article Preview

Abstract:

This study describes the structural modifications of char electrodes and the resulting carbon nanoparticles using method of arc discharge in liquid method, an approach which is simpler and less expensive than other techniques such as CVD and laser vaporization. The nanoparticles are obtained from powder floating on the water surface during arc discharge between two electrodes submerged in water. X-ray diffraction analysis (XRD) profiles show peak formation at 24-26o 2Ѳ, associated with hexagonal graphite structure.Transmission electron microscopy (TEM) confirmed the presence of graphitic-structured nanoparticles after arc discharge; these nanoparticles have diameters ranging from 20 to 100 nm. In contrast, nanoparticles produced using graphite electrodes with current source variations show more complicated and varied stuctures, for example, structures such as nanoonions, graphene, and amorphous nanoparticles.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

141-146

Citation:

Online since:

November 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. L. James, Carbon Fibers, in: Process Economics Program Report, Chemical Insight & Forecasting: IHS Chemical, Report No. 165A, (1992).

Google Scholar

[2] M. Anwar, I. C. Sukmaji, W. R. Wijang, K. Diharjo, Adv. Mater. Res.896 (2014) 574-577.

DOI: 10.4028/www.scientific.net/amr.896.574

Google Scholar

[3] S. Yang, J. Huo, H. Song, X. Chen, Electrochim. Acta 53 (2008) 2238–2244.

Google Scholar

[4] M. Anwar, P. R. Argawan, C. Sukmaji Indro, T. E. Saraswati, A. Purwanto, M. Nizam, Adv. Mater. Res. 1123 (2015) 247 – 251.

DOI: 10.4028/www.scientific.net/amr.1123.247

Google Scholar

[5] S. J. Tans, A. R. M Verschueren and C. Dekker, Nature393 (1998) 49-52.

Google Scholar

[6] S. Iijima, Nature 354 (1991) 56.

Google Scholar

[7] W. Kratschmer, L. D. Lamb, K. Fostiropoulos, and D. R. Huffman, Nature347 (1990) 354.

Google Scholar

[8] S. Ijima and T. Ichihashi, Nature363 (1993) 603.

Google Scholar

[9] A. Thesset al., Science 273 (1996) 483.

Google Scholar

[10] T. E. Saraswati, T. Matsuda, A. Ogino, M. Nagatsu, Diam. Relat. Mater. 20 (2011) 359-363.

Google Scholar

[11] A. M. Cassell, J. A. Raymakers, J. Kong, and H. J. Dai, J. Phys. Chem. B103 (1999) 6484.

Google Scholar

[12] N. Sano, H. Wang, I. Alexandrou, M. Chhowalla,K. B. K. Teo,and G. A. J. Amaratunga, J. Appl. Phys. (2002) 2783-2788.

Google Scholar

[13] N. Sano, H. Wang, M. Chhowalla, I. Alexandrou, and G. A. J. Amaratunga, Nature 414 (2001) 506.

Google Scholar

[14] H. Wang, M. Chhowalla, N. Sano,S. Jiaand G. A. J.Amaratunga, Nanotechnol. 15 (2004) 546-550.

Google Scholar

[15] R. A. Serway (1998). Principles of Physics (2nd ed.). Fort Worth, Texas; London: Saunders College Pub. p.602. ISBN 0-03-020457-7.

Google Scholar

[16] H. O. Pierson, Handbook of carbon, graphite, diamond, and fullerenes: properties, processing, and applications, p.61, William Andrew, 1993. ISBN 0-8155-1339-9.

Google Scholar

[17] Y. L. Zhang, P. X. Hou, C. Liu, H. M. Cheng, Carbon74 (2014) 370-373.

Google Scholar

[18] S. Iijima, M. Yudasaka, R. Yamada, S. Bandow, K.Suenaga, F. Kokai and K. Takahashi, Phys. Lett.70 (1999) 309165.

Google Scholar