Design, Fabrication and Analysis of a Novel Membrane Dielectric Elastomer In-Plane Actuator

Article Preview

Abstract:

The emerging field of soft robots offers the prospective of applying soft actuators as artificial muscles, replacing traditional actuators based on hard materials. Dielectric elastomers (DE), one class of electro-active polymers, represents an attractive technology for the realization of mechatronic actuators, due to their light weight, high energy efficiency and scalability. This work aims at investigating and characterizing a novel design of membrane DE in-plane actuator by magnetic mechanism. A nonlinear dynamic model of the dielectric elastomer actuator (DEA) is established and corresponding material parameters are identified. Natural frequency and response speed of DEAs are studied. It demonstrates that larger stretch and higher response speed can be realized by the proposed DEA.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

101-108

Citation:

Online since:

December 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Trivedi, C. D. Rahn, W. M. Kier, and I. D. Walker: Appl. Bionics. Biomech. 5(3) (2008), pp.99-117.

Google Scholar

[2] D. Rus and M. T. Tolley: Nature 521 (2015), p.467–75.

Google Scholar

[3] R. Pfeifer, M. Lungarella and F. Iida: Commun. ACM 55 (2012), p.76–87.

Google Scholar

[4] S. Kim, C. Laschi and B. Trimmer: Trends Biotechnol. (2013), p.31287–94.

Google Scholar

[5] C. Majidi: Soft Robot. 1 (2014), p.5–11.

Google Scholar

[6] X. Zhao: Soft Matter 10 (2014), p.672–87.

Google Scholar

[7] H. T. Lin, G. G. Leisk and B. Trimmer: Bioinspiration Biomimetics 6 (2011), p.026007.

Google Scholar

[8] C. Laschi and M. Cianchetti: Frontiers Bioeng. Biotechnol. 2 (2014), p.282–92.

Google Scholar

[9] F. Carpi and D. De Rossi: Mater. Sci. Eng. C 24 (2004), p.555–62.

Google Scholar

[10] A. York, J. Dunn and S. Seelecke: Smart Mater. Struct. 19 (2010), p.094014.

Google Scholar

[11] F. Carpi, C. Salaris and D. D. Rossi: Smart Mater. Struct. 16 (2007), p. S300–5.

Google Scholar

[12] G. Kovacs, L. Düring, S. Michel and G. Terrasi: Sens. Actuators A 155 (2009), p.299–307.

Google Scholar

[13] R. Samuel, A. A. Oluwaseun, R. Herbert: Extreme Mech. Lett. 3 (2015), pp.72-81.

Google Scholar

[14] M. Kollosche, J. Zhu, Z. Suo and G. Kofod: Phys. Rev. E 85 (2012), p.051801.

Google Scholar

[15] A. N. Gent: Rubber Chem. Technol. 69 (1996), pp.59-61.

Google Scholar

[16] S. C. Stanton, C. C. McGehee and B. P. Mann: Physica D 239 (2010), pp.640-53.

Google Scholar

[17] J-S Plante and S. Dubowsky: Int. J. Solids Struct. 43 (2006), pp.7727-51.

Google Scholar

[18] C. C. Foo, S. J. A. Koh, C. Keplinger, R. Kaltseis, S. Bauer and Z. Suo: J. Appl. Phys. 111 (2012), p.094107.

DOI: 10.1063/1.4714557

Google Scholar

[19] J. Zhu, S. Cai, Z. Suo: Polym. Int. 59 (2010), p.378–3383.

Google Scholar

[20] J. Sheng, H. Chen, B. Li, Y. Wang: Smart Mater. Struct. 23 (2014), 045010.

Google Scholar