Synthesis of Graphene Oxide Grafted with Epoxidized Natural Rubber via Aminosilane Linkage

Article Preview

Abstract:

Graphene oxide was synthesized from graphite by Hummer method and connected with (3-aminopropyl) triethoxysilane to form graphene oxide-aminosilane (GO-Si) linkage. The solution was centrifuged and washed with acetone to remove unreacted aminosilane before grafting with epoxidized natural rubber (ENR). ENR dissolved in toluene solution was mixed with GO-Si particle and dried at room temperature. Then, it was grafted to form graphene oxide grated with ENR via aminosilane linkage (GO-Si-ENR) by heat treatment. GO-Si-ENR was washed in toluene to remove unconnected ENR molecule. The synthesized GO particle in each step was characterized by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The possible reaction mechanism was proposed in this research. The aim of this synthesis is to improve natural rubber - graphene interfacial interaction thus the dispersion of GO and GO-Si-ENR particle in natural rubber matrix by solvent mixing process was observed by transmission electron microscopy (TEM).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

28-34

Citation:

Online since:

December 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. Bourgeat-Lami, J. Faucheu, A. Noel, Latex routes to graphene-based nanocomposites, Polym. Chem. 6 (2015) 5323-5357.

DOI: 10.1039/c5py00490j

Google Scholar

[2] D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, The chemistry of graphene oxide, Chem. Soc. Rev., 39 (2010) 228-240.

DOI: 10.1039/b917103g

Google Scholar

[3] L. Zhao, X. Sun, Q. Liu, J. Zhao, W. Xing, Natural rubber/graphene oxide nanocomposites prepared by latex mixing, J. Macromol. Sci., Phys., 54 (2015) 581-592.

DOI: 10.1080/00222348.2015.1019325

Google Scholar

[4] S.H. Li, Z.L. Li, T.L. Burnett, T.J.A. Slater, T. Hashimoto, R.J. Young, Nanocomposites of graphene nanoplatelets in natural rubber: microstructure and mechanisms of reinforcement, J. Mater. Sci., 52 (2017) 9558-9572.

DOI: 10.1007/s10853-017-1144-0

Google Scholar

[5] X. Wu, Natural rubber/graphene oxide composites: effect of sheet size on mechanical properties and strain-induced crystallization behavior, Express Polym. Lett., 9 (2015) 672-685.

DOI: 10.3144/expresspolymlett.2015.63

Google Scholar

[6] B. Dong, C. Liu, L. Zhang, Y. Wu, Preparation, fracture, and fatigue of exfoliated graphene oxide/natural rubber composites, RSC Adv., 5 (2015) 17140-17148.

DOI: 10.1039/c4ra17051b

Google Scholar

[7] J. Wu, G. Huang, H. Li, S. Wu, Y. Liu, J. Zheng, Enhanced mechanical and gas barrier properties of rubber nanocomposites with surface functionalized graphene oxide at low content, Polymer, 54 (2013) 1930-1937.

DOI: 10.1016/j.polymer.2013.01.049

Google Scholar

[8] F. Li, N. Yan, Y. Zhan, G. Fei, H. Xia, Probing the reinforcing mechanism of graphene and graphene oxide in natural rubber, J. Appl. Polym. Sci., 129 (2013) 2342-2351.

DOI: 10.1002/app.38958

Google Scholar

[9] H. Yang, P. Liu, T. Zhang, Y. Duan, J. Zhang, Fabrication of natural rubber nanocomposites with high graphene contents via vacuum-assisted self-assembly, RSC Adv., 4 (2014) 27687-27690.

DOI: 10.1039/c4ra02950j

Google Scholar

[10] X.M. Zhang, J.Y. Wang, H.B. Jia, S.Y. You, X.G. Xiong, L.F. Ding, Z.D. Xu, Multifunctional nanocomposites between natural rubber and polyvinyl pyrrolidone modified graphene, Compos. Pt. B-Eng., 84 (2016) 121-129.

DOI: 10.1016/j.compositesb.2015.08.077

Google Scholar

[11] J.R. Potts, O. Shankar, S. Murali, L. Du, R.S. Ruoff, Latex and two-roll mill processing of thermally-exfoliated graphite oxide/natural rubber nanocomposites, Compos. Sci. Technol., 74 (2013) 166-172.

DOI: 10.1016/j.compscitech.2012.11.008

Google Scholar

[12] M. Hernández, M.d.M. Bernal, R. Verdejo, T.A. Ezquerra, M.A. López-Manchado, Overall performance of natural rubber/graphene nanocomposites, Compos. Sci. Technol., 73 (2012) 40-46.

DOI: 10.1016/j.compscitech.2012.08.012

Google Scholar

[13] P. Berki, K. Laszlo, N.T. Tung, J. Karger-Kocsis, Natural rubber/graphene oxide nanocomposites via melt and latex compounding: comparison at very low graphene oxide content, J. Reinf. Plast. Compos., 36 (2017) 808-817.

DOI: 10.1177/0731684417690929

Google Scholar

[14] C.M. Zhang, T.L. Zhai, Y. Dan, L.S. Turng, Reinforced natural rubber nanocomposites using graphene oxide as a reinforcing agent and their in situ reduction into highly conductive materials, Polym. Compos., 38 (2017) 199-207.

DOI: 10.1002/pc.23972

Google Scholar

[15] C. He, X. She, Z. Peng, J. Zhong, S. Liao, W. Gong, J. Liao, L. Kong, Graphene networks and their influence on free-volume properties of graphene-epoxidized natural rubber composites with a segregated structure: rheological and positron annihilation studies, Phys. Chem. Chem. Phys., 17 (2015) 12175-12184.

DOI: 10.1039/c5cp00465a

Google Scholar

[16] C.P. Li, C.F. Feng, Z. Peng, W. Gong, L.X. Kong, Ammonium-assisted green fabrication of graphene/natural rubber latex composite, Polym. Compos., 34 (2013) 88-95.

DOI: 10.1002/pc.22380

Google Scholar

[17] D.C. Stanier, A.J. Patil, C. Sriwong, S.S. Rahatekar, J. Ciambella, The reinforcement effect of exfoliated graphene oxide nanoplatelets on the mechanical and viscoelastic properties of natural rubber, Compos. Sci. Technol., 95 (2014) 59-66.

DOI: 10.1016/j.compscitech.2014.02.007

Google Scholar

[18] N. Yan, G. Buonocore, M. Lavorgna, S. Kaciulis, S.K. Balijepalli, Y. Zhan, H. Xia, L. Ambrosio, The role of reduced graphene oxide on chemical, mechanical and barrier properties of natural rubber composites, Compos. Sci. Technol., 102 (2014) 74-81.

DOI: 10.1016/j.compscitech.2014.07.021

Google Scholar

[19] W. Xing, J. Wu, G. Huang, H. Li, M. Tang, X. Fu, Enhanced mechanical properties of graphene/natural rubber nanocomposites at low content, Polym. Int., 63 (2014) 1674-1681.

DOI: 10.1002/pi.4689

Google Scholar

[20] L. Wu, P. Qu, R. Zhou, B. Wang, S. Liao, Green synthesis of reduced graphene oxide and its reinforcing effect on natural rubber composites, High Perform. Polym., 27 (2014) 486-496.

DOI: 10.1177/0954008314555530

Google Scholar

[21] H. Aguilar-Bolados, M.A. Lopez-Manchado, J. Brasero, F. Aviles, M. Yazdani-Pedram, Effect of the morphology of thermally reduced graphite oxide on the mechanical and electrical properties of natural rubber nanocomposites, Compos. Pt. B-Eng., 87 (2016) 350-356.

DOI: 10.1016/j.compositesb.2015.08.079

Google Scholar

[22] C.F. Matos, F. Galembeck, A.J.G. Zarbin, Multifunctional and environmentally friendly nanocomposites between natural rubber and graphene or graphene oxide, Carbon, 78 (2014) 469-479.

DOI: 10.1016/j.carbon.2014.07.028

Google Scholar

[23] H. Aguilar-Bolados, ctor, M. Yazdani-Pedram, J. Brasero, M.A. Lopez-Manchado, Influence of the surfactant nature on the occurrence of self-assembly between rubber particles and thermally reduced graphite oxide during the preparation of natural rubber nanocomposites, J. Nanomater., 2015 (2015) 1-7.

DOI: 10.1155/2015/212493

Google Scholar

[24] H. Aguilar-Bolados, J. Brasero, M.A. Lopez-Manchado, M. Yazdani-Pedram, High performance natural rubber/thermally reduced graphite oxide nanocomposites by latex technology, Compos. Pt. B-Eng., 67 (2014) 449-454.

DOI: 10.1016/j.compositesb.2014.08.010

Google Scholar

[25] J. Abd Razak, S. Haji Ahmad, C.T. Ratnam, M.A. Mahamood, N. Mohamad, Effects of poly(ethyleneimine) adsorption on graphene nanoplatelets to the properties of NR/EPDM rubber blend nanocomposites, J. Mater. Sci., 50 (2015) 6365-6381.

DOI: 10.1007/s10853-015-9188-5

Google Scholar

[26] X. She, C. He, Z. Peng, L. Kong, Molecular-level dispersion of graphene into epoxidized natural rubber: Morphology, interfacial interaction and mechanical reinforcement, Polymer, 55 (2014) 6803-6810.

DOI: 10.1016/j.polymer.2014.10.054

Google Scholar

[27] W.S. Hummers, R.E. Offeman, Preparation of graphitic oxide, J. Am. Chem. Soc., 80 (1958) 1339-1339.

DOI: 10.1021/ja01539a017

Google Scholar

[28] Y. Nakaramontri, C. Kummerlöwe, C. Nakason, N. Vennemann, The effect of surface functionalization of carbon nanotubes on properties of natural rubber/carbon nanotube composites, Polym. Compos., 36 (2015) 2113-2122.

DOI: 10.1002/pc.23122

Google Scholar