[1]
Y. Watanabe, H. Miura, S. Miura, C. Watanabe, Introduction to Materials Science for Engineers, first ed., Corona Publishing, Tokyo, (2010).
Google Scholar
[2]
E. O. Hall, The deformation and aging of mild steel: III Discussion of results, Proc. Phys. Soc. B 64 (1951) 747-753.
DOI: 10.1088/0370-1301/64/9/303
Google Scholar
[3]
N. J. Petch, The cleavage strength of polycrystals, J. Iron Steel Inst. 174 (1953) 25-28.
Google Scholar
[4]
T. G. Nieh, J. Wadsworth, O. D. Sherby, Superplasticity in Metals and Ceramics, first ed., Cambridge University Press, Cambridge, (1997).
Google Scholar
[5]
V. M. Segal, Equal channel angular extrusion: from macromechanics to structure formation, Mater. Sci. Eng. A 271 (1999) 322-333.
DOI: 10.1016/s0921-5093(99)00248-8
Google Scholar
[6]
A. P. Zhilyaev, S. Lee, G. V. Nurislamova, R. Z. Valiev, T. G. Langdon, Microhardness and microstructural evolution in pure nickel during high-pressure torsion, Scr. Mater. 44 (2001) 2753-2758.
DOI: 10.1016/s1359-6462(01)00955-1
Google Scholar
[7]
Y. Saito, H. Utsunomiya, N. Tsuji, T. Sakai, Novel ultra-high straining process for bulk materials−development of the accumulative roll-bonding (ARB) process, Acta Mater. 47 (1999) 579-583.
DOI: 10.1016/s1359-6454(98)00365-6
Google Scholar
[8]
M. Noda, M. Hirohashi, K. Funami, Low temperature superplasticity and its deformation mechanism in grain refinement of Al-Mg alloy by multi-axial alternative forging, Mater. Trans. 44 (2003) 2288-2297.
DOI: 10.2320/matertrans.44.2288
Google Scholar
[9]
R. S. Mishra, Z. Y. Ma, Friction stir welding and processing, Mater. Sci. Eng. R 50 (2005) 1-78.
Google Scholar
[10]
O. D. Sherby, P. M. Burke, Mechanical behavior of crystalline solids at elevated temperature, Prog. Mater. Sci. 13 (1968) 323-390.
DOI: 10.1016/0079-6425(68)90024-8
Google Scholar
[11]
P. Yabari, T. G. Langdon, An examination of the breakdown in creep by viscous glide in solid solution alloys at high stress levels, Acta Metall. 30 (1982) 2181-2196.
DOI: 10.1016/0001-6160(82)90139-0
Google Scholar
[12]
T. Ito, S. Shibasaki, M. Koma, M. Otsuka, Superplastic-like behavior in medium grained and single crystalline Al-Mg solid solution alloys, J. Jpn. Inst. Met. 66 (2002) 409-417.
DOI: 10.2320/jinstmet1952.66.4_409
Google Scholar
[13]
T. Ito, M. Koma, S. Shibasaki, M. Otsuka, Superplastic-like behavior for Al-Mg alloys with high concentration of magnesium, J. Jpn. Inst. Met. 66 (2002) 476-484.
DOI: 10.2320/jinstmet1952.66.5_476
Google Scholar
[14]
T. Ito, M. Ishikawa, M. Otsuka, Superplastic-like behavior of the equiaxed and coarse grained Al-2mol%Cu solid solution, J. Jpn. Inst. Met. 66 (2002) 832-839.
DOI: 10.2320/jinstmet1952.66.8_832
Google Scholar
[15]
T. Ito, M. Ishikawa, M. Otsuka, Superplastic-like behavior in columnar grained Al-2mol%Cu solid solution, J. Jpn. Inst. Met. 67 (2003) 27-33.
Google Scholar
[16]
T. Ito, J. Saeki, M. Otsuka, Superplastic-like behavior in coarse grained Mg-Al solid solutions, J. Jpn. Inst. Met. 67 (2003) 85-92.
Google Scholar
[17]
T. Ito, M. Otsuka, Superplasticity in Class I type solid solution alloys, Mater. Jpn. 43 (2004) 931-937.
Google Scholar
[18]
T. Ito, Superplastic-like behavior controlled by transgranular deformation in metallic solid solutions, J. Jpn. Inst. Light Met. 62 (2012) 344-350.
DOI: 10.2464/jilm.62.344
Google Scholar
[19]
E. M. Taleff, D. R. Lesuer, J. Wadsworth, Enhanced ductility in coarse-grained Al-Mg alloys, Metall. Mater. Trans. A 27 (1996) 343-352.
DOI: 10.1007/bf02648411
Google Scholar
[20]
E. M. Taleff, G. A. Henshall, T. G. Nieh, D. R. Lesuer, J. Wadsworth, Warm-temperature tensile ductility in Al-Mg alloys, Metall. Mater. Trans. A 29 (1998) 1081-1091.
DOI: 10.1007/s11661-998-1017-x
Google Scholar
[21]
E. M. Taleff, P. J. Nevland, The high-temperature deformation and tensile ductility of Al alloys, JOM 51 (1999) 34-36.
DOI: 10.1007/s11837-999-0009-7
Google Scholar
[22]
E. M. Taleff, P. J. Nevland, P. E. Krajewski, Tensile duscility of several commercial aluminum alloys at elevated temperatures, Metall. Mater. Trans. A 32 (2001) 1119-1130.
DOI: 10.1007/s11661-001-0123-9
Google Scholar
[23]
A. W. Thompson, Calculation of True Volume Grain Diameter, Metallography, 5 (1972) 366-369.
DOI: 10.1016/0026-0800(72)90018-3
Google Scholar
[24]
H. Abrams, Grain Size Measurement by the Intercept Method, Metallography, 4 (1971) 59-78.
DOI: 10.1016/0026-0800(71)90005-x
Google Scholar
[25]
T. Ito, T. Mizuguchi, Coexistence of Grain Boundary Sliding and Solute Drag Creep during High-Temperature Deformation for Fine-Grained Aluminum Solid Solution Alloy, Materia Japan, 56 (2017) 346-353.
DOI: 10.2320/materia.56.346
Google Scholar
[26]
E. Sato, K. Kuribayashi, R. Horiuchi, Grain Growth Induced Superplastic Deformation in Zn-22%Al Alloy, J. Jpn. Inst. Met. 52 (1988) 1043-1050.
DOI: 10.2320/jinstmet1952.52.11_1043
Google Scholar
[27]
E. Sato, K. Itaya, K. Kuribayashi, R. Horiuchi, Grain Growth Induced by Superplastic Deformation in Al-5%Mg-0.6%Mn Alloy, J. Jpn. Inst. Light Met. 39 (1989) 437-443.
DOI: 10.2464/jilm.39.437
Google Scholar
[28]
E. Sato, K. Kuribayashi, R. Horiuchi, Superplasticity and Deformation Induced Grain Growth, Trans. Iron Steel Inst. Jpn. 78 (1992) 1414-1421.
DOI: 10.2355/tetsutohagane1955.78.9_1414
Google Scholar
[29]
F. A. Mohamed, T. G. Langdon, Deformation Mechanism Maps for Solid Solution Alloys, Scripta Metall. 9 (1975) 137-140.
DOI: 10.1016/0036-9748(75)90582-7
Google Scholar
[30]
O. A. Ruano, J. Wadsworth, O. D. Sherby, Harper-Done Creep in Pure Metals, Acta Metall. 36 (1988) 1117-1128.
DOI: 10.1016/0001-6160(88)90165-4
Google Scholar
[31]
O. D. Sherby, J. Wadsworth, Superplasticity—Recent Advances and Future Directions, Prog. Mater. Sci. 33 (1989) 169-221.
DOI: 10.1016/0079-6425(89)90004-2
Google Scholar
[32]
J. Weertman, Theory of Steady-State Creep Based on Dislocation Climb, J. Appl. Phys. 28 (1957) 1185-1189.
Google Scholar
[33]
H. J. Frost, M. F. Ashby, Deformation-Mechanism Maps, First Ed., Pergamon Press, Oxford, (1982).
Google Scholar