Superplastic-Like Elongation by Transition of Deformation Mechanism from Grain Boundary Sliding to Solute Drag Creep in Fine-Grained Al-Mg Solid Solution Alloy

Article Preview

Abstract:

It is widely accepted that the dominant deformation mechanism of fine-grained superplasticity is through grain boundary sliding (GBS) that occurs in fine-grained materials. However, it has been reported that in “Class I” solid solution alloys, superplastic-like behavior controlled by trans-granular deformation occurs by solute drag creep. In this study, we have investigated superplastic behavior in a fine-grained aluminum solid solution alloy with a thermally unstable microstructure. To obtain fine-grained microstructure, friction stir processing (FSP) was applied to a commercial 5083 aluminum (Al−Mg) alloy. An equiaxial fine-grained microstructure with a grain size of 7.4 μm was obtained after FSP; however, this microstructure was unstable at high temperatures. Generally, for fine-grained superplasticity or GBS to occur or continue, the fine-grained microstructure must be smaller than 10 μm during high-temperature deformation. However, a large elongation of over 200% was observed at high temperatures despite the occurrence of grain growth. From microstructural observations, it was determined that a fine-grained microstructure is maintained in the early stage of deformation, but at strain levels greater than 100%, trans-granular deformation occurs. The microstructural feature of this trans-granular deformation is similar to the deformation microstructure of solute drag creep observed in “Class I” solid solution alloys. This indicates that a change in the deformation mechanism from GBS to solute drag creep takes place during high-temperature deformation. Here, based on our observations on our model system, which is a thermally unstable aluminum solid solution alloy, we discuss the possibility of a superplastic elongation occurring by means of a transition of the deformation mechanism.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1216-1221

Citation:

Online since:

December 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Watanabe, H. Miura, S. Miura, C. Watanabe, Introduction to Materials Science for Engineers, first ed., Corona Publishing, Tokyo, (2010).

Google Scholar

[2] E. O. Hall, The deformation and aging of mild steel: III Discussion of results, Proc. Phys. Soc. B 64 (1951) 747-753.

DOI: 10.1088/0370-1301/64/9/303

Google Scholar

[3] N. J. Petch, The cleavage strength of polycrystals, J. Iron Steel Inst. 174 (1953) 25-28.

Google Scholar

[4] T. G. Nieh, J. Wadsworth, O. D. Sherby, Superplasticity in Metals and Ceramics, first ed., Cambridge University Press, Cambridge, (1997).

Google Scholar

[5] V. M. Segal, Equal channel angular extrusion: from macromechanics to structure formation, Mater. Sci. Eng. A 271 (1999) 322-333.

DOI: 10.1016/s0921-5093(99)00248-8

Google Scholar

[6] A. P. Zhilyaev, S. Lee, G. V. Nurislamova, R. Z. Valiev, T. G. Langdon, Microhardness and microstructural evolution in pure nickel during high-pressure torsion, Scr. Mater. 44 (2001) 2753-2758.

DOI: 10.1016/s1359-6462(01)00955-1

Google Scholar

[7] Y. Saito, H. Utsunomiya, N. Tsuji, T. Sakai, Novel ultra-high straining process for bulk materials−development of the accumulative roll-bonding (ARB) process, Acta Mater. 47 (1999) 579-583.

DOI: 10.1016/s1359-6454(98)00365-6

Google Scholar

[8] M. Noda, M. Hirohashi, K. Funami, Low temperature superplasticity and its deformation mechanism in grain refinement of Al-Mg alloy by multi-axial alternative forging, Mater. Trans. 44 (2003) 2288-2297.

DOI: 10.2320/matertrans.44.2288

Google Scholar

[9] R. S. Mishra, Z. Y. Ma, Friction stir welding and processing, Mater. Sci. Eng. R 50 (2005) 1-78.

Google Scholar

[10] O. D. Sherby, P. M. Burke, Mechanical behavior of crystalline solids at elevated temperature, Prog. Mater. Sci. 13 (1968) 323-390.

DOI: 10.1016/0079-6425(68)90024-8

Google Scholar

[11] P. Yabari, T. G. Langdon, An examination of the breakdown in creep by viscous glide in solid solution alloys at high stress levels, Acta Metall. 30 (1982) 2181-2196.

DOI: 10.1016/0001-6160(82)90139-0

Google Scholar

[12] T. Ito, S. Shibasaki, M. Koma, M. Otsuka, Superplastic-like behavior in medium grained and single crystalline Al-Mg solid solution alloys, J. Jpn. Inst. Met. 66 (2002) 409-417.

DOI: 10.2320/jinstmet1952.66.4_409

Google Scholar

[13] T. Ito, M. Koma, S. Shibasaki, M. Otsuka, Superplastic-like behavior for Al-Mg alloys with high concentration of magnesium, J. Jpn. Inst. Met. 66 (2002) 476-484.

DOI: 10.2320/jinstmet1952.66.5_476

Google Scholar

[14] T. Ito, M. Ishikawa, M. Otsuka, Superplastic-like behavior of the equiaxed and coarse grained Al-2mol%Cu solid solution, J. Jpn. Inst. Met. 66 (2002) 832-839.

DOI: 10.2320/jinstmet1952.66.8_832

Google Scholar

[15] T. Ito, M. Ishikawa, M. Otsuka, Superplastic-like behavior in columnar grained Al-2mol%Cu solid solution, J. Jpn. Inst. Met. 67 (2003) 27-33.

Google Scholar

[16] T. Ito, J. Saeki, M. Otsuka, Superplastic-like behavior in coarse grained Mg-Al solid solutions, J. Jpn. Inst. Met. 67 (2003) 85-92.

Google Scholar

[17] T. Ito, M. Otsuka, Superplasticity in Class I type solid solution alloys, Mater. Jpn. 43 (2004) 931-937.

Google Scholar

[18] T. Ito, Superplastic-like behavior controlled by transgranular deformation in metallic solid solutions, J. Jpn. Inst. Light Met. 62 (2012) 344-350.

DOI: 10.2464/jilm.62.344

Google Scholar

[19] E. M. Taleff, D. R. Lesuer, J. Wadsworth, Enhanced ductility in coarse-grained Al-Mg alloys, Metall. Mater. Trans. A 27 (1996) 343-352.

DOI: 10.1007/bf02648411

Google Scholar

[20] E. M. Taleff, G. A. Henshall, T. G. Nieh, D. R. Lesuer, J. Wadsworth, Warm-temperature tensile ductility in Al-Mg alloys, Metall. Mater. Trans. A 29 (1998) 1081-1091.

DOI: 10.1007/s11661-998-1017-x

Google Scholar

[21] E. M. Taleff, P. J. Nevland, The high-temperature deformation and tensile ductility of Al alloys, JOM 51 (1999) 34-36.

DOI: 10.1007/s11837-999-0009-7

Google Scholar

[22] E. M. Taleff, P. J. Nevland, P. E. Krajewski, Tensile duscility of several commercial aluminum alloys at elevated temperatures, Metall. Mater. Trans. A 32 (2001) 1119-1130.

DOI: 10.1007/s11661-001-0123-9

Google Scholar

[23] A. W. Thompson, Calculation of True Volume Grain Diameter, Metallography, 5 (1972) 366-369.

DOI: 10.1016/0026-0800(72)90018-3

Google Scholar

[24] H. Abrams, Grain Size Measurement by the Intercept Method, Metallography, 4 (1971) 59-78.

DOI: 10.1016/0026-0800(71)90005-x

Google Scholar

[25] T. Ito, T. Mizuguchi, Coexistence of Grain Boundary Sliding and Solute Drag Creep during High-Temperature Deformation for Fine-Grained Aluminum Solid Solution Alloy, Materia Japan, 56 (2017) 346-353.

DOI: 10.2320/materia.56.346

Google Scholar

[26] E. Sato, K. Kuribayashi, R. Horiuchi, Grain Growth Induced Superplastic Deformation in Zn-22%Al Alloy, J. Jpn. Inst. Met. 52 (1988) 1043-1050.

DOI: 10.2320/jinstmet1952.52.11_1043

Google Scholar

[27] E. Sato, K. Itaya, K. Kuribayashi, R. Horiuchi, Grain Growth Induced by Superplastic Deformation in Al-5%Mg-0.6%Mn Alloy, J. Jpn. Inst. Light Met. 39 (1989) 437-443.

DOI: 10.2464/jilm.39.437

Google Scholar

[28] E. Sato, K. Kuribayashi, R. Horiuchi, Superplasticity and Deformation Induced Grain Growth, Trans. Iron Steel Inst. Jpn. 78 (1992) 1414-1421.

DOI: 10.2355/tetsutohagane1955.78.9_1414

Google Scholar

[29] F. A. Mohamed, T. G. Langdon, Deformation Mechanism Maps for Solid Solution Alloys, Scripta Metall. 9 (1975) 137-140.

DOI: 10.1016/0036-9748(75)90582-7

Google Scholar

[30] O. A. Ruano, J. Wadsworth, O. D. Sherby, Harper-Done Creep in Pure Metals, Acta Metall. 36 (1988) 1117-1128.

DOI: 10.1016/0001-6160(88)90165-4

Google Scholar

[31] O. D. Sherby, J. Wadsworth, Superplasticity—Recent Advances and Future Directions, Prog. Mater. Sci. 33 (1989) 169-221.

DOI: 10.1016/0079-6425(89)90004-2

Google Scholar

[32] J. Weertman, Theory of Steady-State Creep Based on Dislocation Climb, J. Appl. Phys. 28 (1957) 1185-1189.

Google Scholar

[33] H. J. Frost, M. F. Ashby, Deformation-Mechanism Maps, First Ed., Pergamon Press, Oxford, (1982).

Google Scholar