Spontaneous Microstructural Evolution and Magnetic Properties of Nano-Scale Particles Comprising Ferromagnetic Element Atoms in Cu-Ni-Fe and Cu-Ni-Co Alloys

Article Preview

Abstract:

Nano-scale granular magnetic material is a core component in next-generation recording devices. We investigated the influences of element species and composition of ferromagnetic atoms in copper-nickel base nanogranular magnetic materials. In this work, the authors focused on how microstructural evolution and magnetic properties are correlated in Cu-20at%Ni, Cu-15at%Ni-5at%Co and Cu-15at%Ni-5at%Fe alloys. We used Magneto-thermogravimetry (MTG), superconducting quantum interference device (SQUID) magnetometry and first-principles calculations based on the method of Koster-Korringa-Rostker (KKR) with the Coherent Potential Approximation (CPA) in order to investigate magnetic properties. Transmission electron microscope (TEM) observations revealed that ferromagnetic element atoms were precipitated with annealing at 973K, but microstructures were changed, depending on the combination and composition of the solute atoms. The magnetic property measurements and first-principles calculations have confirmed that magnetic precipitates are responsible for the magnetic properties of the Cu-Ni-Co and Cu-Ni-Fe alloys.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1222-1227

Citation:

Online since:

December 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Grünberg, R. Schreiber, Y. Pang, U. Walz, M. Brodsky, H. Sowers, Layered magnetic structures: Evidence for antiferromagnetic coupling of Fe layers across Cr interlayers, J. Appl. Phys., 61 (1987) 3750.

DOI: 10.1063/1.338656

Google Scholar

[2] M. Baibich, J. Broto, A. Fert, F. Dau, F. Petroff, P. Etienne, et al., Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices, Phys Rev Lett. 61 (1988) 2472.

DOI: 10.1103/physrevlett.61.2472

Google Scholar

[3] X. Zuo, L. Qu, C. Zhao, B. An, E. Wang, R. Niu, Y. Xin, J. Lu, K. Han, Nucleation and growth of γ-Fe precipitate in Cu-2%Fe alloy aged under high magnetic field, J. Alloy. Compd., 662 (2016) 355-360.

DOI: 10.1016/j.jallcom.2015.12.046

Google Scholar

[4] J. Mino, V. Zhukova, J.J. Del Val, M. Ipatov, A. Martinezamesti, R. Varga, A. Zhukov, Engineering of the GMR Effect in CuCo Microwires with Granular Structure, J. Electron Mater., 45 (2016) 2401-2406.

DOI: 10.1007/s11664-016-4351-6

Google Scholar

[5] N. Omari, H. Lassri, A. Fnidiki, M. Abid, E.K. Hlil, Magnetic and electronic studies of Cu80Fe5Ni15 granular ribbons, J. Magn. Magn. Mater., 343 (2013) 108-111.

DOI: 10.1016/j.jmmm.2013.04.053

Google Scholar

[6] J.S. Kim, T. Taniuchi, M. Mizuguchi, S. Shin, K. Takanashi, M. Takeda, Microstructural evolution and correlated magnetic domain configuration of nanoparticles embedded in a single crystal of Cu75–Ni20–Fe5 alloy, J Phys D Appl Phys. 49 (2016) 335006.

DOI: 10.1088/0022-3727/49/33/335006

Google Scholar

[7] H. Sakakura, J.S. Kim, M. Takeda, Linear arrangements of nano-scale ferromagnetic particles spontaneously formed in a copper-base Cu-Ni-Co alloy, J. Alloy Compd., Accepted (2018).

DOI: 10.1088/1361-6463/aaac1a

Google Scholar

[8] J.S. Kim, M. Takeda, D.S. Bae, Microstructural evolution and magnetic properties of ultrafine solute-atom particles formed in a Cu75–Ni20–Fe5 alloy on isothermal annealing, Jpn. J. Appl. Phys. 55 (2016) 123002.

DOI: 10.7567/jjap.55.123002

Google Scholar