Cracking and Failure in a High Strength Low Alloy Steel during Solidification

Abstract:

Article Preview

The present study focuses on characterizing cracks and fracture that appeared during solidification in the segregated zones of the as-cast structure of a large size ingot made of high strength low alloy steel. Solidification experiment was conducted, using Gleeble® 3800 thermo-mechanical simulator, on samples taken from the ingot/hot top interface of a 40 MT (Metric Ton) ingot. The thermal cycle consisted in heating from ambient temperature to 1385 °C with a constant heating rate of 2 °C/s followed by a free cooling. Optical and scanning electronic microscopies were used to analyze and quantify the cracked regions. Microstructural observations revealed that shrinkage during rapid solidification of melted grain boundaries ultimately led to the initiation and propagation of cracks.

Info:

Periodical:

Main Theme:

Edited by:

R. Shabadi, Mihail Ionescu, M. Jeandin, C. Richard and Tara Chandra

Pages:

15-20

Citation:

A. Loucif et al., "Cracking and Failure in a High Strength Low Alloy Steel during Solidification", Materials Science Forum, Vol. 941, pp. 15-20, 2018

Online since:

December 2018

Export:

Price:

$41.00

* - Corresponding Author

[1] A. Loucif, E. Ben Fredj, M. Jahazi, L-P. Lapierre-Boire, R. Tremblay, R. Beauvais, Analysis of macrosegregation in large size forged ingot of high strength steel, Proceeding of the 6th International Congress on the Science and Technology of Steelmaking (ICS2015), Beijing (China), (May 12-14, 2015) 1043-1046.

DOI: https://doi.org/10.4028/www.scientific.net/msf.879.1176

[2] M. Bitterlin, A. Loucif, N. Charbonnier, M. Jahazi, L-P. Lapierre-Boire, J-B Morin, Cracking mechanisms in large size ingots of high nickel content low alloyed steel, Eng. Fail. Anal. 68 (2016) 122-131.

DOI: https://doi.org/10.1016/j.engfailanal.2016.05.027

[3] H. Mehrara, D. G. Eskin, R. H. Petrov, M. Lalpoor, L. Katgerman, Linear contraction behavior of low-carbon, low-alloy steels during and after solidification using real-time measurements, Metall. Mater. Trans. A. 45A (2014) 1445-1456.

DOI: https://doi.org/10.1007/s11661-013-2089-9

[4] P. Patil, A. Puranik, G. Balachandran, V. Balasubramanian, FEM simulation of effect of mould wall thickness on low alloy steel ingot solidification, Ironmaking Steelmaking. (2016) 1-7.

DOI: https://doi.org/10.1080/03019233.2016.1146817

[5] B. Santillana, R. Boom, D. Eskin, H. Mizukami, M. Hanao, M. Kawamoto, High-temperature mechanical behavior and fracture analysis of a low-carbon steel related to cracking, Metall. Mater. Trans. A. 43A (2012) 5048-5057.

DOI: https://doi.org/10.1007/s11661-012-1331-1

[6] J. Campbell, Castings: The New Metallurgy of Cast Metals. 2nd ed. Butterworth-Heinemann, Oxford, (2003).

[7] Y. Yang, W. Luo, M. Chen, G. Shao, Simulation analysis of thermal stress during casting process of large-sized alloy steel ingot, Front. Mater. Sci. China. 3(3) (2009) 301-305.

DOI: https://doi.org/10.1007/s11706-009-0049-5

[8] B.G. Thomas, I.V. Samarasekera, J.K. Brimacombe, Investigation of panel crack in steel ingots: Part II. Of-corner panel cracks, Metall. Trans. B. 39B (1988) 289-301.

DOI: https://doi.org/10.1007/bf02654214

[9] A. Loucif, D. Shahriari, C. Zhang, M. Jahazi, L-P. Lapierre-Boire, R. Tremblay, Macrosegregation of alloying elements in hot top of large size high strength steel ingot, Mater. Sci. Forum. 879 (2017) 1176-1181.

DOI: https://doi.org/10.4028/www.scientific.net/msf.879.1176

[10] S. Harada, S. Tanaka, H. Misumi, S. Omizoguch, H. Horiguch, A formation mechanism of transverse cracks on CC slab surface, ISIJ International, 30, No. 4 (1990) 310-316.

DOI: https://doi.org/10.2355/isijinternational.30.310

[11] F.G. Wilson, T. Gladman, Aluminium nitride in steel, International Materials Reviews. 33, N 5 (1988) 221-286.

DOI: https://doi.org/10.1179/imr.1988.33.1.221

[12] H. Mehrara, D. G. Eskin, R. H. Petrov, M. Lalpoor, L. Katgerman, Linear contraction behavior of low-carbon, low-alloy steels during and after solidification using real-time measurements, Metall. Mater. Trans. A. 45A (2014) 1445-1456.

DOI: https://doi.org/10.1007/s11661-013-2089-9