Parameters Affecting Energy Absorption in Metal Foams

Article Preview

Abstract:

Recent research findings on the mechanical behavior of metal foams are summarized in this work. Thanks to their properties in compressive tests, a wide range of foamed materials has been considered for energy-absorption applications such as Al, Fe, Ti, Ni and its alloys. The main parameters affecting energy absorption are focused and presented: cell size, relative density, strain rate, hybrid foam (Al-Cu, Al-Ni), base metal, and composites structures (Al-foam filled tube and sandwich). Metal foam response, impact resistance and failure are discussed in many configurations and test conditions. The results of finite elements modelling and its validation by means of mechanical tests are discussed too.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1552-1557

Citation:

Online since:

December 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Costanza, G. Gusmano, R. Montanari, M.E. Tata, Manufacturing routes and applications of metal foams, Metall. Ital. 2 (2003) 31-35.

Google Scholar

[2] G. Costanza, R. Montanari, M.E. Tata, Optimization of TiH2 and SiC content in Al foams, Metall. Ital. 6 (2005) 41-47.

Google Scholar

[3] G. Costanza, M.E. Tata, Metal foams: recent experimental results and further developments, Metall. Ital. 3 (2011) 3-7.

Google Scholar

[4] S.K. Nammi, G. Edwards, H. Shirvani, Effect of cell-size on the energy absorption features of closed-cell aluminium foams, Acta Astronaut. 128 (2016) 243-250.

DOI: 10.1016/j.actaastro.2016.06.047

Google Scholar

[5] G. Costanza, G. Gusmano, R. Montanari, M.E. Tata, N. Ucciardello, Effect of powder mix composition on Al foam morphology, P I Mech Eng E-J Pro. 222 (2008) 131-140.

DOI: 10.1243/14644207jmda143

Google Scholar

[6] S. Gaitanaros, S. Kyriakides, On the effect of relative density on the crushing and energy absorption of open-cell foams under impact, Int J Impact Eng. 82 (2015) 3-13.

DOI: 10.1016/j.ijimpeng.2015.03.011

Google Scholar

[7] G. Costanza, M.E. Tata, Dynamic and static compressive behavior of aluminium foam, Proceedings of the 4th International Structural Engineering and Construction Conference ISEC-4 Innovations in Structural Engineering and Construction, Melbourne 2007, pp.919-922.

Google Scholar

[8] Q. Fang, J. Zhang, Y. Zhang, J. Liu, Z. Gong, Mesoscopic investigation of closed-cell aluminum foams on energy absorption capability under impact, Compos. Struct. 124 (2015) 409-420.

DOI: 10.1016/j.compstruct.2015.01.001

Google Scholar

[9] A. Jung, A.D. Pullen, W.G. Proud, Strain-rate effects in Ni/Al composite metals foams from quasi static to low-velocity impact behavior, Composites Part A. 85 (2016) 1-11.

DOI: 10.1016/j.compositesa.2016.02.031

Google Scholar

[10] Y. Sun, R. Burgueno, A.J. Vanderklok, S.A. Tekalur, W. Wang, I. Lee. Compressive behavior of aluminum/copper hybrid foams under high strain rate loading, Mater. Sci. Eng. A. 592 (2014) 111-120.

DOI: 10.1016/j.msea.2013.10.104

Google Scholar

[11] A. Jung, E. Lach, S. Diebels. New hybrid foam materials for impact protection, Int. J. Imp. Eng. 64 (2014) 30-38.

DOI: 10.1016/j.ijimpeng.2013.09.002

Google Scholar

[12] M.F. Ashby, A.G. Evans, N.A. Fleck, L.J. Gibson, J.W. Hutchinson, H.N.G. Wadley. Metal Foams: A Design Guide. Butterworth-Heinemann, Woburn, (2000).

DOI: 10.1016/b978-075067219-1/50001-5

Google Scholar

[13] G. Costanza, F. Mantineo, S. Missori, A. Sili, M.E. Tata, Characterization of the compressive behaviour of an Al foam by X-Ray Computerized Tomography, TMS Light Metals, (2012) pp.533-536.

DOI: 10.1002/9781118359259.ch90

Google Scholar

[14] G. Costanza, F. Mantineo, A. Sili, M.E. Tata, Characterization of Cu tube filled with Al alloy foam by means of X-Ray computer tomography, TMS Annual Meeting Supplemental Proceedings, (2014) pp.613-619.

DOI: 10.1002/9781118889879.ch74

Google Scholar

[15] G. Costanza, A Sili, M.E. Tata, Mechanical characterization of AISI 316 tubes filled with Al alloy foams, Metall. Ital. 3 (2015) 9-14.

Google Scholar

[16] C. Liu, Y.X. Zhang, J. Li. Impact responses of sandwich panels with fibre metal laminate skins and aluminium foam core, Compos. Struct. 182 (2017) 183-190.

DOI: 10.1016/j.compstruct.2017.09.015

Google Scholar

[17] F. Brugnolo, G. Costanza, M.E. Tata, Manufacturing and characterization of AlSi foams as core materials, Procedia Eng. 109 (2015) 219-227.

DOI: 10.1016/j.proeng.2015.06.220

Google Scholar

[18] G. Costanza, M.E. Tata, Recycling of exhaust batteries in lead foam electrodes, TMS Annual Meeting, (2013) pp.272-278.

DOI: 10.1007/978-3-319-48763-2_28

Google Scholar

[19] H. Choi, S. Shil'ko, J. Gubizca, H. Choe, Study of the compression and wear-resistance of freeze-cast Ti and Ti-5W alloy foams for biomedical applications, J. Mech. Behav. Biomed. Mater. 72 (2017) 66-73.

DOI: 10.1016/j.jmbbm.2017.04.020

Google Scholar

[20] G.Y. Hou, C.S. Wu, Y.P. Tang, L.Y. Sun, H.Z. Cao, G.Q. Zheng, Effect of surface aluminizing on structure and compressive strength of Fe foam prepared by electrodeposition, Mat. Sci. Eng. A. 604 (2014) 33-40.

DOI: 10.1016/j.msea.2014.02.049

Google Scholar

[21] H. Choe, D.C. Dunand, Synthesis, Structure and mechanical properties of Ni-Al and Ni-Cr-Al superalloy foams, Acta Mater. 52 (2004) 1283-1295.

DOI: 10.1016/j.actamat.2003.11.012

Google Scholar