[1]
G. Costanza, G. Gusmano, R. Montanari, M.E. Tata, Manufacturing routes and applications of metal foams, Metall. Ital. 2 (2003) 31-35.
Google Scholar
[2]
G. Costanza, R. Montanari, M.E. Tata, Optimization of TiH2 and SiC content in Al foams, Metall. Ital. 6 (2005) 41-47.
Google Scholar
[3]
G. Costanza, M.E. Tata, Metal foams: recent experimental results and further developments, Metall. Ital. 3 (2011) 3-7.
Google Scholar
[4]
S.K. Nammi, G. Edwards, H. Shirvani, Effect of cell-size on the energy absorption features of closed-cell aluminium foams, Acta Astronaut. 128 (2016) 243-250.
DOI: 10.1016/j.actaastro.2016.06.047
Google Scholar
[5]
G. Costanza, G. Gusmano, R. Montanari, M.E. Tata, N. Ucciardello, Effect of powder mix composition on Al foam morphology, P I Mech Eng E-J Pro. 222 (2008) 131-140.
DOI: 10.1243/14644207jmda143
Google Scholar
[6]
S. Gaitanaros, S. Kyriakides, On the effect of relative density on the crushing and energy absorption of open-cell foams under impact, Int J Impact Eng. 82 (2015) 3-13.
DOI: 10.1016/j.ijimpeng.2015.03.011
Google Scholar
[7]
G. Costanza, M.E. Tata, Dynamic and static compressive behavior of aluminium foam, Proceedings of the 4th International Structural Engineering and Construction Conference ISEC-4 Innovations in Structural Engineering and Construction, Melbourne 2007, pp.919-922.
Google Scholar
[8]
Q. Fang, J. Zhang, Y. Zhang, J. Liu, Z. Gong, Mesoscopic investigation of closed-cell aluminum foams on energy absorption capability under impact, Compos. Struct. 124 (2015) 409-420.
DOI: 10.1016/j.compstruct.2015.01.001
Google Scholar
[9]
A. Jung, A.D. Pullen, W.G. Proud, Strain-rate effects in Ni/Al composite metals foams from quasi static to low-velocity impact behavior, Composites Part A. 85 (2016) 1-11.
DOI: 10.1016/j.compositesa.2016.02.031
Google Scholar
[10]
Y. Sun, R. Burgueno, A.J. Vanderklok, S.A. Tekalur, W. Wang, I. Lee. Compressive behavior of aluminum/copper hybrid foams under high strain rate loading, Mater. Sci. Eng. A. 592 (2014) 111-120.
DOI: 10.1016/j.msea.2013.10.104
Google Scholar
[11]
A. Jung, E. Lach, S. Diebels. New hybrid foam materials for impact protection, Int. J. Imp. Eng. 64 (2014) 30-38.
DOI: 10.1016/j.ijimpeng.2013.09.002
Google Scholar
[12]
M.F. Ashby, A.G. Evans, N.A. Fleck, L.J. Gibson, J.W. Hutchinson, H.N.G. Wadley. Metal Foams: A Design Guide. Butterworth-Heinemann, Woburn, (2000).
DOI: 10.1016/b978-075067219-1/50001-5
Google Scholar
[13]
G. Costanza, F. Mantineo, S. Missori, A. Sili, M.E. Tata, Characterization of the compressive behaviour of an Al foam by X-Ray Computerized Tomography, TMS Light Metals, (2012) pp.533-536.
DOI: 10.1002/9781118359259.ch90
Google Scholar
[14]
G. Costanza, F. Mantineo, A. Sili, M.E. Tata, Characterization of Cu tube filled with Al alloy foam by means of X-Ray computer tomography, TMS Annual Meeting Supplemental Proceedings, (2014) pp.613-619.
DOI: 10.1002/9781118889879.ch74
Google Scholar
[15]
G. Costanza, A Sili, M.E. Tata, Mechanical characterization of AISI 316 tubes filled with Al alloy foams, Metall. Ital. 3 (2015) 9-14.
Google Scholar
[16]
C. Liu, Y.X. Zhang, J. Li. Impact responses of sandwich panels with fibre metal laminate skins and aluminium foam core, Compos. Struct. 182 (2017) 183-190.
DOI: 10.1016/j.compstruct.2017.09.015
Google Scholar
[17]
F. Brugnolo, G. Costanza, M.E. Tata, Manufacturing and characterization of AlSi foams as core materials, Procedia Eng. 109 (2015) 219-227.
DOI: 10.1016/j.proeng.2015.06.220
Google Scholar
[18]
G. Costanza, M.E. Tata, Recycling of exhaust batteries in lead foam electrodes, TMS Annual Meeting, (2013) pp.272-278.
DOI: 10.1007/978-3-319-48763-2_28
Google Scholar
[19]
H. Choi, S. Shil'ko, J. Gubizca, H. Choe, Study of the compression and wear-resistance of freeze-cast Ti and Ti-5W alloy foams for biomedical applications, J. Mech. Behav. Biomed. Mater. 72 (2017) 66-73.
DOI: 10.1016/j.jmbbm.2017.04.020
Google Scholar
[20]
G.Y. Hou, C.S. Wu, Y.P. Tang, L.Y. Sun, H.Z. Cao, G.Q. Zheng, Effect of surface aluminizing on structure and compressive strength of Fe foam prepared by electrodeposition, Mat. Sci. Eng. A. 604 (2014) 33-40.
DOI: 10.1016/j.msea.2014.02.049
Google Scholar
[21]
H. Choe, D.C. Dunand, Synthesis, Structure and mechanical properties of Ni-Al and Ni-Cr-Al superalloy foams, Acta Mater. 52 (2004) 1283-1295.
DOI: 10.1016/j.actamat.2003.11.012
Google Scholar