Explosion Welding: Process Evolution and Parameters Optimization

Article Preview

Abstract:

The development of explosion welding (EXW) technology underwent a stop as soon as it was introduced, however, in the recent years an increasing interest was found due to the wide range of materials which can be welded, similar and especially dissimilar ones. In addition to the high quality, such welded joints show a good compromise among the involved materials properties. Literature does not provide a comprehensive understanding of the whole mechanism and occurring phenomena but is mostly limited to analyse just some process parameters, like the investigations on joint properties that can be achieved if process takes place under vacuum or open air. In this work some key points are discussed to describe the evolution step of the process and the innovations introduced like the MIL (metallic-intermetallic laminate) composites for aerospace industry. Process parameters are analyzed to highlight the positive and negative aspects, the experiments in the laboratory will be described to confine the explosion to the joint and in particular to minimize the explosion energy and to improve the efficiency of the technique. At last some significant applications where this technique is widely used are showed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1558-1564

Citation:

Online since:

December 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. B. Franklin Le, V. Philipchuk, Explosive welding, U.S. patent 3.024.526 A, (1962).

Google Scholar

[2] M. Acarer, B. Gulenc, F. Findik, Investigation of explosive welding parameters and their effects on microhardness and shear strength, Mater. Des. 24 (2003) 659-664.

DOI: 10.1016/s0261-3069(03)00066-9

Google Scholar

[3] A. Ghanadzadeh, A. Darviseh, Shock loading effect on the corrosion properties of low-carbon steel, Mater. Chem. Phys. 82 (2003) 78-83.

DOI: 10.1016/s0254-0584(03)00166-4

Google Scholar

[4] F. Grignon, D. Benson, K.S. Vecchio, M.A. Meyers, Explosive welding of aluminum to aluminum: analysis, computations and experiments, Int. J. Impact Eng. 30 (2004) 1333-1351.

DOI: 10.1016/j.ijimpeng.2003.09.049

Google Scholar

[5] J.H. Han, J.I. Ahn, M.C. Shin, Effect of interlayer on shear deformation behavior of AA5083 Al alloy/SS41 steel plates manufactured by explosive welding, J. Mater. Sci. 38 (2003) 13-18.

Google Scholar

[6] V. Balasubrahmanian, M. Rathinasabapathe, K. Raghukandam, Modelling of process parameters in explosive cladding of mild steel and aluminum, J. Mater. Process. Technol. 63 (1997) 83-88.

Google Scholar

[7] M. Acarer, B. Demir, An investigation of mechanical and metallurgical properties of explosive welded aluminum-dual phase steel, Mater. Lett. 62 (2008) 4158-4160.

DOI: 10.1016/j.matlet.2008.05.060

Google Scholar

[8] C. Choi, P. Tan, D. Ruan, B. Dixon, A new concept of universal substitutive explosion welding, Mater. Des. 115 (2017) 393-403.

DOI: 10.1016/j.matdes.2016.11.053

Google Scholar

[9] V.I. Lysak, S.V. Kuzmin, Energy balance during explosive welding, J. Mater. Process. Technol. 222 (2015) 356-364.

DOI: 10.1016/j.jmatprotec.2015.03.024

Google Scholar

[10] N. W. Buijs, Explosive welding of metals in a vacuum environment, http://smt-holland.com/img/files/ExplosionCladdingarticle.pdf.

Google Scholar

[11] G.H.S.F.L. Carvalho, R. Mendes, R.M. Leal, I. Galvao, A. Loureiro, Effect of flyer material on the interface phenomena in Al and Cu explosive welds, Mater. Des. 122 (2017) 172-183.

DOI: 10.1016/j.matdes.2017.02.087

Google Scholar

[12] B.A. Greenberg, M.A. Ivanov, V.V Rybin et al., The problem of intermixing of metals possessing no mutual solubility upon explosion welding Cu-Ta, Fe-Ag, Al-Ta, Mater. Charact. 75 (2013) 51-62.

DOI: 10.1016/j.matchar.2012.10.011

Google Scholar

[13] D. Firrao, P. Matteis, G. Scavino, G. Ubertalli, C. Pozzi, M. Ienco, P. Piccardo, M. Pinasco, G. Costanza, R. Montanari, M. E. Tata, et al., Microstructural Effect in Face-Centered-Cubic alloys after Small Charge Explosion, Metall. Mater. Trans. A. 38A (2007) 2869-2884.

DOI: 10.1007/s11661-007-9318-z

Google Scholar

[14] B. Crossland, The development of explosive welding and its application in engineering, Metals mater. (1971) 401-2.

Google Scholar

[15] S.A.A. Akbari-Mousavi, L.M. Barret, S.T.S. Al-Hassani, Explosive welding of metals plates, J. Mater. Process. Technol. 202 (2008) 224-239.

DOI: 10.1016/j.jmatprotec.2007.09.028

Google Scholar

[16] F. Findik, Recent developments in explosive welding, Mater. Des. 32 (2011) 1081-1093.

Google Scholar

[17] B.S. Zlobin, Explosion welding of steel with aluminum, Comb. Explos. Shock Wave. 38 (2002) 374-377.

Google Scholar

[18] T.Z. Blazynski, Explosive Welding, Forming, and Compaction, Elsevier Appl. Science, (1983).

Google Scholar

[19] M.M. Hoseini Athar, B. Tolaminejad, Weldability window and the effect of interface morphology on the properties of al/Cu/Al laminated composites fabricated by explosive welding, Mater. Des. 86 (2015) 516-525.

DOI: 10.1016/j.matdes.2015.07.114

Google Scholar

[20] M.X. Xie, L.J. Zhang, G.F. Zhang, Microstructure and mechanical properties of Cp-Ti/X65 bimetallic sheets fabricated by explosive welding and hot rolling, Mater. Des. 87 (2015) 181-197.

DOI: 10.1016/j.matdes.2015.08.021

Google Scholar

[21] M. Kwiecien, J. Majta, D. Dziedzic, Shear deformation and failure of explosive Inconel-microalloyed steels bimetal, Archives of Civil and Mechanical Engineering, 14 (2014) 32-39.

DOI: 10.1016/j.acme.2013.07.003

Google Scholar

[22] J.H. Han, J.P. Ahn, M. C. Shin, Effect of interlayer thickness on shear deformation behavior of AA5083 aluminum alloy/SS41 steel plates manufactured by explosive welding, J. Mater. Sci. 38 (2003)13-18.

Google Scholar

[23] G. Costanza, V. Crupi, E. Guglielmino, A. Sili, M.E. Tata, Metallurgical characterization of an explosion welded aluminum - steel joint, Metall. Ital. 11 (2016) 17-22.

Google Scholar

[24] T. K. Coskun, B. Volgyi, I. S. Nagl, Investigation of aluminum-steel joint formed by explosion welding, Journal of Physics: Conference Series, 602 (2015) 012026.

DOI: 10.1088/1742-6596/602/1/012026

Google Scholar

[25] M. Acarer, B. Demir, An investigation of mechanical and metallurgical properties of explosive welded aluminium–dual phase steel, Mater. Lett. 62 No 25 (2008) 4158-4160.

DOI: 10.1016/j.matlet.2008.05.060

Google Scholar

[26] L. Tricarico, R. Spina, Experimental investigation of laser beam welding of explosion-welded steel/aluminum structural transition joints, Mater. Des. 31 (2010) 1981–(1992).

DOI: 10.1016/j.matdes.2009.10.032

Google Scholar

[27] H.K. Wylie, P.E.G. Williams, B. Crossland, Further experimental investigations of explosice welding parameters, Proc. 3rd Int. Conf. of The center for High energy rate forming, University of Denver, Colorado (1971).

Google Scholar

[28] L. Agudo, D. Eyidi et al., Intermetallic FexAly phases in a steel/Al alloy fusion welded, J. Mater. Sci. 42 (2007) 4205-4214.

DOI: 10.1007/s10853-006-0644-0

Google Scholar

[29] I.A. Bataev, T.S. Ogneva et. al., Explosively welded multilayer Ni-Al composites, Mater. Des. 88 (2015) 1082-1087.

DOI: 10.1016/j.matdes.2015.09.103

Google Scholar

[30] I. Bataev, A. Bataev, V. Mali, D. Pavliukova, Structural and mechanical properties of metallic–intermetallic laminate composites produced by explosive welding and annealing, Mater. Des. 35 (2012) 225-234.

DOI: 10.1016/j.matdes.2011.09.030

Google Scholar

[31] S. Chang-gen, W.Yu, Z. Lin-Sheng, H. Hong-Bao. G. Yu-heng, Detonation Mechanism in Double Vertical Explosive Welding of Stainless Steel/Steel, J. Iron Steel Res. 22 (2015) 949-953.

DOI: 10.1016/s1006-706x(15)30095-9

Google Scholar

[32] V. Lysak, S. Kuzmin, Energy balance during explosive welding, J. Mat. Process. Technol. 222 (2015) 356–364.

DOI: 10.1016/j.jmatprotec.2015.03.024

Google Scholar