In Situ Synchrotron Analysis of Twinning Stresses in an Aged Mg-4.5Zn Alloy

Article Preview

Abstract:

Aging increases the yield strength of aged Mg-Zn alloys. The effect of aging on the stress required for twinning is examined using in-situ transmission based synchrotron X-ray diffraction. The as extruded material was aged at variety of temperatures for different times. It is found that increasing sample diameter (thickness) results in peak broadening. The data are analysed to establish the evolution of twin volume fraction with stress. Results indicated an increase in twinning stress at 10% twin volume fraction in aged samples in comparison with non-aged condition. The investigation showed a strong relation between the macroscopic yield stress and the twinning stress (at 10% twin volume fraction).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1579-1584

Citation:

Online since:

December 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. Partridge, The crystallography and deformation modes of hexagonal close-packed metals, Metall. Rev. 12 (1967) 169-194.

DOI: 10.1179/mtlr.1967.12.1.169

Google Scholar

[2] J. Robson, N. Stanford, M. Barnett, Effect of precipitate shape on slip and twinning in magnesium alloys, Acta Mater. 59 (2011) 1945-1956.

DOI: 10.1016/j.actamat.2010.11.060

Google Scholar

[3] J.D. Robson, N. Stanford, M.R. Barnett, Effect of Precipitate Shape and Habit on Mechanical Asymmetry in Magnesium Alloys, Metall. Mater. Trans. A 44 (2013) 2984-2995.

DOI: 10.1007/s11661-012-1466-0

Google Scholar

[4] J.F. Nie, Effects of precipitate shape and orientation on dispersion strengthening in magnesium alloys, Scripta Mater. 48 (2003) 1009-1015.

DOI: 10.1016/s1359-6462(02)00497-9

Google Scholar

[5] N. Stanford, M. Barnett, Effect of particles on the formation of deformation twins in a magnesium-based alloy, Mater. Sci. Eng. A 516 (2009) 226-234.

DOI: 10.1016/j.msea.2009.04.001

Google Scholar

[6] J. Jain, P. Cizek, W. Poole, M. Barnett, Precipitate characteristics and their effect on the prismatic-slip-dominated deformation behaviour of an Mg–6 Zn alloy, Acta Mater. 61 (2013) 4091-4102.

DOI: 10.1016/j.actamat.2013.03.033

Google Scholar

[7] J.F. Nie, Precipitation and hardening in magnesium alloys, Metall. Mater. Trans. A 43 (2012) 3891-3939.

DOI: 10.1007/s11661-012-1217-2

Google Scholar

[8] X. Gao, J. Nie, Characterization of strengthening precipitate phases in a Mg–Zn alloy, Scripta Mater. 56 (2007) 645-648.

DOI: 10.1016/j.scriptamat.2007.01.006

Google Scholar

[9] J. Jain, P. Cizek, W.J. Poole, M.R. Barnett, The role of back stress caused by precipitates on {10-12} twinning in a Mg–6Zn alloy, Mater. Sci. Eng. A 647 (2015) 66-73.

DOI: 10.1016/j.msea.2015.08.091

Google Scholar

[10] R.P. Mulay, S.R. Agnew, C.H. Caceres, In-Situ Neutron Diffraction Study of the Deformation Mechanisms in Solutionized Mg-Zn Alloys, in: M.V. Manuel, A. Singh, M. Alderman, N.R. Neelameggham (Eds.), Magnesium Technology 2015, Springer International Publishing, Cham, 2016, pp.97-102.

DOI: 10.1002/9781119093428.ch20

Google Scholar

[11] S.R. Kada, Deformation of magnesium alloys during laboratory scale in-situ x-ray diffraction, Deakin University, Geelong, Australia, 2013, p.223.

Google Scholar

[12] S.R. Kada, P. Lynch, M. Barnett, Development of a laboratory-based transmission diffraction technique for in situ deformation studies of Mg alloys, J. Appl. Crystallogr. 48 (2015) 365-376.

DOI: 10.1107/s1600576715001879

Google Scholar

[13] S.R. Kada, P.A. Lynch, J.A. Kimpton, M.R. Barnett, In-situ X-ray diffraction studies of slip and twinning in the presence of precipitates in AZ91 alloy, Acta Mater. 119 (2016) 145-156.

DOI: 10.1016/j.actamat.2016.08.022

Google Scholar

[14] N. Stanford, A.S. Taylor, P. Cizek, F. Siska, M. Ramajayam, M.R. Barnett, Twinning in magnesium-based lamellar microstructures, Scripta Mater. 67 (2012) 704-707.

DOI: 10.1016/j.scriptamat.2012.06.035

Google Scholar

[15] O. Muránsky, D. Carr, M. Barnett, E. Oliver, P. Šittner, Investigation of deformation mechanisms involved in the plasticity of AZ31 Mg alloy: in situ neutron diffraction and EPSC modelling, Mater. Sci. Eng. A 496 (2008) 14-24.

DOI: 10.1016/j.msea.2008.07.031

Google Scholar

[16] A. Sadeghi, M. Pekguleryuz, Recrystallization and texture evolution of Mg–3%Al–1%Zn–(0.4–0.8)%Sr alloys during extrusion, Mater. Sci. Eng. A 528 (2011) 1678-1685.

DOI: 10.1016/j.msea.2010.10.096

Google Scholar

[17] C.J. Bettles, M.A. Gibson, K. Venkatesan, Enhanced age-hardening behaviour in Mg–4 wt.% Zn micro-alloyed with Ca, Scripta Mater. 51 (2004) 193-197.

DOI: 10.1016/j.scriptamat.2004.04.020

Google Scholar

[18] J.M. Rosalie, H. Somekawa, A. Singh, T. Mukai, The effect of size and distribution of rod-shaped β1' precipitates on the strength and ductility of a Mg–Zn alloy, Mater. Sci. Eng. A 539 (2012) 230-237.

DOI: 10.1016/j.msea.2012.01.087

Google Scholar

[19] O. Muránsky, M. Barnett, D. Carr, S. Vogel, E. Oliver, Investigation of deformation twinning in a fine-grained and coarse-grained ZM20 Mg alloy: Combined in situ neutron diffraction and acoustic emission, Acta Mater. 58 (2010) 1503-1517.

DOI: 10.1016/j.actamat.2009.10.057

Google Scholar

[20] E. Oliver, M.R. Daymond, P.J. Withers, Neutron diffraction study of extruded magnesium during cyclic and elevated temperature loading, Mater. Sci. Forum 490-491 (2005) 257-262.

DOI: 10.4028/www.scientific.net/msf.490-491.257

Google Scholar