[1]
P. Partridge, The crystallography and deformation modes of hexagonal close-packed metals, Metall. Rev. 12 (1967) 169-194.
DOI: 10.1179/mtlr.1967.12.1.169
Google Scholar
[2]
J. Robson, N. Stanford, M. Barnett, Effect of precipitate shape on slip and twinning in magnesium alloys, Acta Mater. 59 (2011) 1945-1956.
DOI: 10.1016/j.actamat.2010.11.060
Google Scholar
[3]
J.D. Robson, N. Stanford, M.R. Barnett, Effect of Precipitate Shape and Habit on Mechanical Asymmetry in Magnesium Alloys, Metall. Mater. Trans. A 44 (2013) 2984-2995.
DOI: 10.1007/s11661-012-1466-0
Google Scholar
[4]
J.F. Nie, Effects of precipitate shape and orientation on dispersion strengthening in magnesium alloys, Scripta Mater. 48 (2003) 1009-1015.
DOI: 10.1016/s1359-6462(02)00497-9
Google Scholar
[5]
N. Stanford, M. Barnett, Effect of particles on the formation of deformation twins in a magnesium-based alloy, Mater. Sci. Eng. A 516 (2009) 226-234.
DOI: 10.1016/j.msea.2009.04.001
Google Scholar
[6]
J. Jain, P. Cizek, W. Poole, M. Barnett, Precipitate characteristics and their effect on the prismatic-slip-dominated deformation behaviour of an Mg–6 Zn alloy, Acta Mater. 61 (2013) 4091-4102.
DOI: 10.1016/j.actamat.2013.03.033
Google Scholar
[7]
J.F. Nie, Precipitation and hardening in magnesium alloys, Metall. Mater. Trans. A 43 (2012) 3891-3939.
DOI: 10.1007/s11661-012-1217-2
Google Scholar
[8]
X. Gao, J. Nie, Characterization of strengthening precipitate phases in a Mg–Zn alloy, Scripta Mater. 56 (2007) 645-648.
DOI: 10.1016/j.scriptamat.2007.01.006
Google Scholar
[9]
J. Jain, P. Cizek, W.J. Poole, M.R. Barnett, The role of back stress caused by precipitates on {10-12} twinning in a Mg–6Zn alloy, Mater. Sci. Eng. A 647 (2015) 66-73.
DOI: 10.1016/j.msea.2015.08.091
Google Scholar
[10]
R.P. Mulay, S.R. Agnew, C.H. Caceres, In-Situ Neutron Diffraction Study of the Deformation Mechanisms in Solutionized Mg-Zn Alloys, in: M.V. Manuel, A. Singh, M. Alderman, N.R. Neelameggham (Eds.), Magnesium Technology 2015, Springer International Publishing, Cham, 2016, pp.97-102.
DOI: 10.1002/9781119093428.ch20
Google Scholar
[11]
S.R. Kada, Deformation of magnesium alloys during laboratory scale in-situ x-ray diffraction, Deakin University, Geelong, Australia, 2013, p.223.
Google Scholar
[12]
S.R. Kada, P. Lynch, M. Barnett, Development of a laboratory-based transmission diffraction technique for in situ deformation studies of Mg alloys, J. Appl. Crystallogr. 48 (2015) 365-376.
DOI: 10.1107/s1600576715001879
Google Scholar
[13]
S.R. Kada, P.A. Lynch, J.A. Kimpton, M.R. Barnett, In-situ X-ray diffraction studies of slip and twinning in the presence of precipitates in AZ91 alloy, Acta Mater. 119 (2016) 145-156.
DOI: 10.1016/j.actamat.2016.08.022
Google Scholar
[14]
N. Stanford, A.S. Taylor, P. Cizek, F. Siska, M. Ramajayam, M.R. Barnett, Twinning in magnesium-based lamellar microstructures, Scripta Mater. 67 (2012) 704-707.
DOI: 10.1016/j.scriptamat.2012.06.035
Google Scholar
[15]
O. Muránsky, D. Carr, M. Barnett, E. Oliver, P. Šittner, Investigation of deformation mechanisms involved in the plasticity of AZ31 Mg alloy: in situ neutron diffraction and EPSC modelling, Mater. Sci. Eng. A 496 (2008) 14-24.
DOI: 10.1016/j.msea.2008.07.031
Google Scholar
[16]
A. Sadeghi, M. Pekguleryuz, Recrystallization and texture evolution of Mg–3%Al–1%Zn–(0.4–0.8)%Sr alloys during extrusion, Mater. Sci. Eng. A 528 (2011) 1678-1685.
DOI: 10.1016/j.msea.2010.10.096
Google Scholar
[17]
C.J. Bettles, M.A. Gibson, K. Venkatesan, Enhanced age-hardening behaviour in Mg–4 wt.% Zn micro-alloyed with Ca, Scripta Mater. 51 (2004) 193-197.
DOI: 10.1016/j.scriptamat.2004.04.020
Google Scholar
[18]
J.M. Rosalie, H. Somekawa, A. Singh, T. Mukai, The effect of size and distribution of rod-shaped β1' precipitates on the strength and ductility of a Mg–Zn alloy, Mater. Sci. Eng. A 539 (2012) 230-237.
DOI: 10.1016/j.msea.2012.01.087
Google Scholar
[19]
O. Muránsky, M. Barnett, D. Carr, S. Vogel, E. Oliver, Investigation of deformation twinning in a fine-grained and coarse-grained ZM20 Mg alloy: Combined in situ neutron diffraction and acoustic emission, Acta Mater. 58 (2010) 1503-1517.
DOI: 10.1016/j.actamat.2009.10.057
Google Scholar
[20]
E. Oliver, M.R. Daymond, P.J. Withers, Neutron diffraction study of extruded magnesium during cyclic and elevated temperature loading, Mater. Sci. Forum 490-491 (2005) 257-262.
DOI: 10.4028/www.scientific.net/msf.490-491.257
Google Scholar