Microstructure and Properties of Cu-Cr-Zr-Ag Alloy

Article Preview

Abstract:

The Cr precipitation sequence in Cu-Cr-Zr-Ag alloy during the aging process at 450°C could be obtained by Transmission electron microscopy (TEM) and High-resolution transmission microscopy (HRTEM) in the study. The strengthening curve shows a unimodal type and the tensile strength trends to peak when the aged for 4h. The Cr phase transformation of Cu-Cr-Zr-Ag aged at 450°C is supersaturated solid sloution→G.P zones→fcc Cr phase→order fcc Cr phase→bcc Cr phase. The orientation relationship between bcc Cr precipitates and the matrix change from cube-on-cube to NW-OR.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1613-1617

Citation:

Online since:

December 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M Hatakeyama, T Toyama, J Yang, Y Nagai, M Hasegawa, T Ohkubo, M Eldrup, B.N. Singh. Mater. Trans. 49 (2008) 518-521.

Google Scholar

[2] J.Y. Cheng, B Shen, F.X. Yu. Mater. Character. 81 (2013) 68-75.

Google Scholar

[3] J.M. Zhou, D.G. Zhu, L.T. Tang, X.S. Jiang, S Chen, X Peng, C.F. Hu. Vacuum. 131 (2016) 156-163.

Google Scholar

[4] A Chbihi, X Sauvage, D Blavette. Acta. Mater. 60 (2012) 4575-4585.

Google Scholar

[5] Q Liu, X Zhang, Y Ge, J Wang, J.Z. Cui. Metall. Mater. Trans A. 37 (2006) 3233-3238.

Google Scholar

[6] Y Pang, C.D. Xia, M.P. Wang, Z Li, Z Xiao, H.G. Wei, X.F. Sheng, Y.L. Jia, C Chen. J. Alloys. Comp. 582 (2014) 786-792.

Google Scholar

[7] C.D. Xia, W Zhang, Z.Y. Kang, Y.L. Jia, Y.F. Wu, R Zhang, G.Y. Xu, M.P. Wang. Mater. Sci. Eng A. 538 (2012) 295-301.

Google Scholar

[8] Z.Q. Wang, Y.B. Zhong, G.H. Cao, C Wang, J Wang, W.L. Ren, Z.S. Lei, Z.R. Ren. J. Alloys. Comp. 479 (2009) 303-306.

Google Scholar

[9] F.X. Huang, J.S. Ma, H.L. Ning, Z.T. Geng, C Lu, S.M. Guo, X.T. Yu, T Wang, H Li, H.F. Lou. Scr. Mater. 48 (2003) 97-102.

Google Scholar

[10] J.Y. Cheng, F.X. Yu, B Shen. Mater. Lett. 115 (2014) 201-204.

Google Scholar

[11] Y Zhang, A Volinsky, H.T. Tran, Z Chai, P Liu, B.H. Tian, Y Liu. Mater. Sci. Eng A. 650 (2016) 248-253.

Google Scholar

[12] H.Q. Li, S.H. Xie, X.J. Mi, P.Y. Wu. J. Mater. Sci. Technol. 23 (2007) 795-800.

Google Scholar

[13] R.W. Knights, P Wilkes. Metall. Trans. 4 (1973) 2389-2393.

Google Scholar

[14] Z Rdzawski, J Stobrawa. Scr. Metall. Mater. 20 (1986) 341-344.

Google Scholar

[15] J.H. Su, Q.M. Dong, P Liu, H.J. Li, B.X. Kang. Mater. Sci. Eng A. 392 (2005) 422-426.

Google Scholar

[16] G.C. Weatherly, P Humble, D Borland. Acta. Metall. 27 (1979) 1815-1828.

Google Scholar

[17] Y Jin, K Adachi, T Takeuchi, H.G. Suzuki. J. Mater. Sci. 33 (1998) 1333-1341.

Google Scholar

[18] I.S. Batra, G.K. Dey, U.D. Kulkarni, S Banerjee. Mater. Sci. Eng A. 356 (2002) 32-36.

Google Scholar

[19] W.B. Pearson. A Handbook of Lattice Spacings and Structures of Metals and Alloys. Pergamon, Oxford, 1964:531-533.

Google Scholar

[20] N.Y. Tang, D.M.R. Taplin, G.L. Dunlop. Mater. Sci. Technol. 4 (1985) 270-275.

Google Scholar

[21] I.S. Batra, G.K. Dey, U.D. Kulkarni, S Banerjee. J. Nucl. Mater. 299 (2001) 91-100.

Google Scholar

[22] L.J. Peng, H.F. Xie, G.J. Huang, G.L. Xu, X.Q. Yin, X Feng, X.J. Xu, Z. Yang. J. Alloys. Comp. 708(2017) 1096-1102.

Google Scholar

[23] H.F. Xie, X.J. Mi, G.J. Huang, B.D. Gao, X.Q. Yin, Y.F. Li. Rare Met. 30(2011) 650-656.

Google Scholar