Stress Gradient Determination in Anti-Corrosion Multilayer Coating

Article Preview

Abstract:

To reduce maintenance and to increase the corrosion protection and lifetime of maritimestructures while complying with environmental standards, multilayer coatings are applied to protectsteel sections. A new generation of hybrid sol-gel and/or HiPIMS Ni-based thin films appear toconstitute an efficient pre-treatment before the anti-corrosion paint application. However, increasingthe number of coatings and associated interfaces may lead to coating failure due to stresses inducedby the different deposition processes. Therefore developing smart models to assess the stressdistribution along these multilayers appears of significant importance. The well-known Stoneyformula cannot be used for multilayers and owing to the large dimensions of the object to be protected.To assess an easily measurable curvature after deposition, thin steel sheets are used but do not respectany more the Stoney hypotheses. So we set up an analytical thermo-elasto-plastic model to evaluatethe stresses induced by depositions in each layer. This model is based on the various thermalexpansion coefficients of every coat. After extrapolation along the complete thickness, combiningsol-gel and PVD deposition smoothens the stress difference between steel and paint. The shearstresses at interface seems thus to be reduced. The evolution of the stress difference between layerswith the imposed deflection can predict the mechanical strength and the interface failure. In order toevaluate the quality of the model, in-situ four-point bending in SEM was performed to study of theadhesion between the various layers. The results deduced from the model are in good agreement withSEM images.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1632-1638

Citation:

Online since:

December 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P.A. Sorensen, S. Kiil, K. Dam-Johansen and C.E. Weinell, Anticorrosive: a review, J. Coat. Tech. Res., 6 (2009) 135-176.

DOI: 10.1007/s11998-008-9144-2

Google Scholar

[2] G. Stoney, The tension of metallic films deposited by electrolysis, Proc. R. Soc. Lond. A, 82 (2009) 172-175.

Google Scholar

[3] L. Le Blanc, E. Campazzi and P. Savigne, Sol for sol-gel process coating of a surface and coating method by sol-gel process using same, Patent EP1885911 B1, (2007).

DOI: 10.1515/9783748600350-006

Google Scholar

[4] W.J. van Ooij, D. Zhu, M. Stacy, A. Seth, T. Mugada, J. Gandhi and P. Puomi, Corrosion protection properties of organofunctional silanes – an overview, Tsin. Sc. Tech., 10 (2005) 639-664.

DOI: 10.1016/s1007-0214(05)70134-6

Google Scholar

[5] J.H. Osborne, K.Y. Blohowiak, S.R. Taylor, C. Hunter, G. Bierwagon, B. Carlson, D. Bernard and M.S. Donley, Testing and evaluation of nonchromated coating systems for aerospace applications, Prog. Org. Coat., 41 (2001) 217-225.

DOI: 10.1016/s0300-9440(01)00132-1

Google Scholar

[6] A.P. Ehiasarian, J.G. Wen an I. Petrov, Interface microstructure engineering by high power impulse magnetron sputtering for the enhancement of adhesion, J. App. Phys., 101 (2007) 1-10.

DOI: 10.1063/1.2697052

Google Scholar

[7] D.T. Nguyen, A. Ferrec, J. Keraudy, M. Richard-Plouet, A. Goullet, L. Cattin, L. Brohan and P.Y. Jouan, Ellipsometric and XPS characterization of transparent nickel oxide thin films deposited by reactive HiPIMS, Surf. Coat. Tech., 250 (2014) 21–25.

DOI: 10.1016/j.surfcoat.2014.02.014

Google Scholar

[8] P. Poolcharuansin and J.W. Bradley, Short-and long-term plasma phenomena in a HiPIMS discharge, Plas. Sour. Sc. Tech., 19 (2010) 025010 1-13.

DOI: 10.1088/0963-0252/19/2/025010

Google Scholar

[9] P.A. Dubos, Influence de la température et du trajet de chargement sur les transitions volume/surface des métaux cubiques à faces centrées, PhD th., University of Normandy, (2013).

Google Scholar

[10] M. Tatat, Influence de films fonctionnels sur les propriétés élastiques des substrats associés: application au système Ni/NiO, PhD th., ENSMA, (2012).

Google Scholar

[11] B. Panicaud, Contraintes de croissance et cinétiques d'oxydation dans des couches d'oxydes thermiques de fer et de nickel ; Etude in-situ pas diffraction des rayons X et modélisation, PhD th., University of La Rochelle, (2004).

DOI: 10.1016/s0151-9107(00)80006-9

Google Scholar

[12] A. Dominguez, J. Castaing, Déformation de l'oxyde de nickel monocristallin, Rev. Phys. App., 11 (1976) 387-391.

DOI: 10.1051/rphysap:01976001103038700

Google Scholar

[13] C. Liu, A.M. Huntz, J.L. Lebrun, Origin and development of residual stresses in the Ni/NiO system: in-situ studies at high temperature by XRD, Mat. Sc. Eng. A, 160 (1993) 113-126.

DOI: 10.1016/0921-5093(93)90504-8

Google Scholar

[14] F. Compoint, Développement de revêtements optiques hybrids organiques-inorganiques pour limiter l'endommagement laser, PhD th., University François Rabelais of Tours, (2015).

Google Scholar

[15] G.M. Pharr and W.C. Oliver, Measurement of thin film mechanical properties using nanoindentation, MRS Bull., (1992) 29-33.

DOI: 10.1557/s0883769400041634

Google Scholar

[16] X. C. Zhang, B. S. Xu, H. D. Wang and Y. X. Wu, An analytical model for predicting thermal residual stresses in multilayer coating systems, Th. Sol. Fil., 488 (2005) 274-282.

DOI: 10.1016/j.tsf.2005.04.027

Google Scholar

[17] J. Keraudy, Synthèse de couches minces à base de nickel par pulvérisation reactive DC et HiPIMS pour des applications contre la corrosion atmosphérique, PhD th., University of Nantes, (2015).

Google Scholar

[18] Q. Hatte, P. Casari, P.Y. Jouan, M. Richard-Plouet, P.A. Dubos, S. Branchu, N. Guitter, R. Coulais, Characterization of corrosion resistant coatings deposited on steel, Poster presentation, EMRS Strasbourg, (2017).

DOI: 10.4028/www.scientific.net/msf.941.1632

Google Scholar