[1]
Z. Wang, X. Wu, and Y. Hong, Torsion fracture behavior of drawn pearlitic steel wires with different heat treatments,, Adv. Mater. Res. 33–37 (2008) 41–46.
DOI: 10.4028/www.scientific.net/amr.33-37.41
Google Scholar
[2]
W. Nam and C. Bae, Void initiation and microstructural changes during wire drawing of pearlitic steels,, Mater. Sci. Eng. A 203 (1995) 278–285.
DOI: 10.1016/0921-5093(95)09826-7
Google Scholar
[3]
J. Atienza, M. Martinez-Perez, J. Ruiz-Hervias, F. Mompean, M. Garcia-Hernandez, and M. Elices, Residual stresses in cold drawn ferritic rods,, Scr. Mater. 52 (2005) 305–309.
DOI: 10.1016/j.scriptamat.2004.10.010
Google Scholar
[4]
M. Zelin and R. Shemenski, Ductility of pearlitic wires under different loading,, Wire J. Int. 40 (2007) 69–73.
Google Scholar
[5]
G. Krauss, High-carbon steels: fully pearlitic microstructures and applications,, in Steels: Processing, Structure, and Performance, ASM International, 2005, 281–295.
DOI: 10.31399/asm.tb.spsp2.t54410315
Google Scholar
[6]
C. Ciganik, J. Speer, K. Findley, and W. Van Raemdonck, Influence of composition and processing on the strength and torsional ductility of high strength steel wire,, in Proceedings from the Materials Science and Technology, 2016, 491–498.
DOI: 10.4028/www.scientific.net/msf.941.1790
Google Scholar
[7]
C. Ciganik, Influence of processing and composition on the strength and torsional ductility of high strength steel wire,, Colorado School of Mines, Golden CO, (2017).
Google Scholar
[8]
R. Pennington, Effects of processing history on the strength, ductility, and fracture response of 0.9C-0.2Cr-1.3Si wire,, Colorado School of Mines, Golden CO, (2009).
Google Scholar
[9]
C. Hinchliffe and G. Smith, Strain aging of pearlitic steel wire during post-drawing heat treatments,, Mater. Sci. Technol. 17 (2001) 148–154.
DOI: 10.1179/026708301101509935
Google Scholar
[10]
S. Joung, E. Kang, S. Hong, Y. Kim, and W. Nam, Aging behavior and delamination in cold drawn and post-deformation annealed hyper-eutectoid steel wires,, Mater. Sci. Eng. A 586 (2013) 171–177.
DOI: 10.1016/j.msea.2013.07.095
Google Scholar
[11]
X. Hu, L. Wang, F. Fang, Z. Ma, Z. Xie, and J. Jiang, Origin and mechanism of torsion fracture in cold-drawn pearlitic steel wires,, J. Mater. Sci. 48 (2013) 5528–5535.
DOI: 10.1007/s10853-013-7347-0
Google Scholar
[12]
T. Tarui, J. Takahashi, H. Tashiro, N. Maruyama, and S. Nishida, Microstructure control and strengthening of high-carbon steel wires,, Nippon Steel Tech. Rep. 91 (2005) 56–61.
Google Scholar
[13]
X. Zhang, N. Hansen, A. Godfrey, and X. Huang, Dislocation-based plasticity and strengthening mechanisms in sub-20 nm lamellar structures in pearlitic steel wire,, Acta Mater. 114 (2016) 176–183.
DOI: 10.1016/j.actamat.2016.04.040
Google Scholar
[14]
J. Hidalgo, K. Findley, and M. Santofimia, Thermal and mechanical stability of retained austenite surrounded by martensite with different degrees of tempering,, Mater. Sci. Eng. A 690 (2017) 337–347.
DOI: 10.1016/j.msea.2017.03.017
Google Scholar
[15]
M. Wang, C. Tasan, D. Ponge, A. Kostka, and D. Raabe, Smaller is less stable: size effects on twinning vs. transformation of reverted austenite in TRIP-maraging steels,, Acta Mater. 79 (2014) 268–281.
DOI: 10.1016/j.actamat.2014.07.020
Google Scholar