Hydrogen Release from Oxidized Titanium Hydride

Article Preview

Abstract:

Hydrogen storage is one of the most important industrial applications of titanium hydride (TiH2). A critical issue is the hydrogen release rate that strongly depends on the surface structure of TiH2 particles. This work reports the results of an experimental campaign carried out on TiH2 powders submitted to heat treatments in air at different temperatures and treatment times. After each heat treatment the TiH2 powders were examined by X-ray diffraction (XRD) and the results evidenced that the surface layer consists of TiO2 and Ti2O. Titanium oxide formation has been monitored by XRD at high temperature. Hydrogen release during heating of oxidized powders was investigated through temperature programmed desorption (TPD). Residual hydrogen in TiH2 depends on the specific treatment: higher temperature and soaking time of the treatment, lower its content.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2203-2208

Citation:

Online since:

December 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Gambini, M. Manno, M. Vellini. Numerical analysis and performance assessment of metal hydride-based hydrogen storage systems. Int. J. Hydrogen Energy 33 (2008) 6178-6187.

DOI: 10.1016/j.ijhydene.2008.08.006

Google Scholar

[2] M. Gambini. Metal hydride energy systems performance evaluation. Part A: Dynamic analysis model of heat and mass transfer. Int. J. Hydrogen Energy 19 (1994) 67-80.

DOI: 10.1016/0360-3199(94)90179-1

Google Scholar

[3] M. Gambini. Metal hydride energy systems performance evaluation. Part B: Performance analysis model of dual metal hydride energy systems. Int. J. Hydrogen Energy 19 (1994) 81-97.

DOI: 10.1016/0360-3199(94)90180-5

Google Scholar

[4] M. Gambini. Performances of metal hydride heat pumps operating under dynamic conditions. Int. J. Hydrogen Energy 14 (1989) 821-830.

DOI: 10.1016/0360-3199(89)90019-0

Google Scholar

[5] M. Gambini, T. Stilo, M. Vellini, R. Montanari. High temperature metal hydrides for energy systems Part A: Numerical model validation and calibration. Int. J. Hydrogen Energy 42 (2017) 16195-16202.

DOI: 10.1016/j.ijhydene.2017.05.062

Google Scholar

[6] M. Gambini, T. Stilo, M. Vellini. High temperature metal hydrides for energy systems Part B: Comparison between high and low temperature reservoirs. Int. J. Hydrogen Energy 42 (2017) 16203-16213.

DOI: 10.1016/j.ijhydene.2017.03.227

Google Scholar

[7] B. Sakintuna, F. Lamari-Darkrim, M. Hirscher. Metal hydride materials for solid hydrogen storage: A review. Int. J. Hydrogen Energy 32 (2007) 1121-1140.

DOI: 10.1016/j.ijhydene.2006.11.022

Google Scholar

[8] H. Liu, P. He, J.C. Feng, J. Cao, Kinetic study on nonisothermal dehydrogenation of TiH2 powders. Int. J. Hydrogen Energy 34 (2009) 3018-3025.

DOI: 10.1016/j.ijhydene.2009.01.095

Google Scholar

[9] K.A. Erk, D.C. Dunand, K.R. Shull. Titanium with controllable pore fractions by thermoreversible gelcasting of TiH2. Acta Mater. 56 (2008) 5147-5157.

DOI: 10.1016/j.actamat.2008.06.035

Google Scholar

[10] C.C. Yang, H. Nakae. Foaming characteristics control during production of aluminum alloy foam. J. Alloy Comp. 313 (2000) 188-191.

DOI: 10.1016/s0925-8388(00)01136-1

Google Scholar

[11] A.R. Kennedy, V.H. Lopez. The decomposition behavior of as-received and oxidized TiH2 foaming-agent powder. Mater. Sci. Eng. A 357 (2003) 258-263.

DOI: 10.1016/s0921-5093(03)00211-9

Google Scholar

[12] J. Li, P. Fan, Z.Z. Fang, C. Zhou. Kinetics of isothermal hydrogenation of magnesium with TiH2 additive. Int. J. Hydrogen Energy 39 (2014) 7373-7381.

DOI: 10.1016/j.ijhydene.2014.02.159

Google Scholar

[13] V. Gergerly, T.W. Clyne, Metal Foams and Porous Metal Structures, Bremen, 1999, p.83.

Google Scholar

[14] B. Matijasevic–Lux, J. Banhart, S. Fiechter, O. Gorke, N. Wanderka. Modification of titanium hydride for improved aluminium foam manufacture. Acta Materialia 54 (2006) 1887-1900.

DOI: 10.1016/j.actamat.2005.12.012

Google Scholar

[15] C. Jimenez, F. Garcia-Moreno, B. Pfretzschner, M. Klaus, M. Wollgarten, I. Zizak, G. Schumacher, M. Tovar, J. Banhart. Decomposition of TiH2 studied in situ by synchrotron X-ray and neutron diffraction. Acta Mater. 59 (2011) 6318-6330.

DOI: 10.1016/j.actamat.2011.06.042

Google Scholar

[16] G. Lapi, C. Alvani, F. Varsano, S. Kaciulis, R. Montanari, A. Varone, M. Gambini, M. Vellini. Effect of heat treatments on TiH2: surface and hydrogen release. Materials Science Forum 879 (2016) 2032-2037.

DOI: 10.4028/www.scientific.net/msf.879.2032

Google Scholar

[17] Q. Wang, J. Fan, S. Zhang, Y. Yun, J. Zhang, P. Zhang, J. Hu, L. Wang, G. Shao. In situ coupling of Ti2O with rutile TiO2 as a core-shell structure and its photocatalysis performance. RSC Adv. 7 (2017), 54662–54667.

DOI: 10.1039/c7ra10347f

Google Scholar