[1]
M. Gambini, M. Manno, M. Vellini. Numerical analysis and performance assessment of metal hydride-based hydrogen storage systems. Int. J. Hydrogen Energy 33 (2008) 6178-6187.
DOI: 10.1016/j.ijhydene.2008.08.006
Google Scholar
[2]
M. Gambini. Metal hydride energy systems performance evaluation. Part A: Dynamic analysis model of heat and mass transfer. Int. J. Hydrogen Energy 19 (1994) 67-80.
DOI: 10.1016/0360-3199(94)90179-1
Google Scholar
[3]
M. Gambini. Metal hydride energy systems performance evaluation. Part B: Performance analysis model of dual metal hydride energy systems. Int. J. Hydrogen Energy 19 (1994) 81-97.
DOI: 10.1016/0360-3199(94)90180-5
Google Scholar
[4]
M. Gambini. Performances of metal hydride heat pumps operating under dynamic conditions. Int. J. Hydrogen Energy 14 (1989) 821-830.
DOI: 10.1016/0360-3199(89)90019-0
Google Scholar
[5]
M. Gambini, T. Stilo, M. Vellini, R. Montanari. High temperature metal hydrides for energy systems Part A: Numerical model validation and calibration. Int. J. Hydrogen Energy 42 (2017) 16195-16202.
DOI: 10.1016/j.ijhydene.2017.05.062
Google Scholar
[6]
M. Gambini, T. Stilo, M. Vellini. High temperature metal hydrides for energy systems Part B: Comparison between high and low temperature reservoirs. Int. J. Hydrogen Energy 42 (2017) 16203-16213.
DOI: 10.1016/j.ijhydene.2017.03.227
Google Scholar
[7]
B. Sakintuna, F. Lamari-Darkrim, M. Hirscher. Metal hydride materials for solid hydrogen storage: A review. Int. J. Hydrogen Energy 32 (2007) 1121-1140.
DOI: 10.1016/j.ijhydene.2006.11.022
Google Scholar
[8]
H. Liu, P. He, J.C. Feng, J. Cao, Kinetic study on nonisothermal dehydrogenation of TiH2 powders. Int. J. Hydrogen Energy 34 (2009) 3018-3025.
DOI: 10.1016/j.ijhydene.2009.01.095
Google Scholar
[9]
K.A. Erk, D.C. Dunand, K.R. Shull. Titanium with controllable pore fractions by thermoreversible gelcasting of TiH2. Acta Mater. 56 (2008) 5147-5157.
DOI: 10.1016/j.actamat.2008.06.035
Google Scholar
[10]
C.C. Yang, H. Nakae. Foaming characteristics control during production of aluminum alloy foam. J. Alloy Comp. 313 (2000) 188-191.
DOI: 10.1016/s0925-8388(00)01136-1
Google Scholar
[11]
A.R. Kennedy, V.H. Lopez. The decomposition behavior of as-received and oxidized TiH2 foaming-agent powder. Mater. Sci. Eng. A 357 (2003) 258-263.
DOI: 10.1016/s0921-5093(03)00211-9
Google Scholar
[12]
J. Li, P. Fan, Z.Z. Fang, C. Zhou. Kinetics of isothermal hydrogenation of magnesium with TiH2 additive. Int. J. Hydrogen Energy 39 (2014) 7373-7381.
DOI: 10.1016/j.ijhydene.2014.02.159
Google Scholar
[13]
V. Gergerly, T.W. Clyne, Metal Foams and Porous Metal Structures, Bremen, 1999, p.83.
Google Scholar
[14]
B. Matijasevic–Lux, J. Banhart, S. Fiechter, O. Gorke, N. Wanderka. Modification of titanium hydride for improved aluminium foam manufacture. Acta Materialia 54 (2006) 1887-1900.
DOI: 10.1016/j.actamat.2005.12.012
Google Scholar
[15]
C. Jimenez, F. Garcia-Moreno, B. Pfretzschner, M. Klaus, M. Wollgarten, I. Zizak, G. Schumacher, M. Tovar, J. Banhart. Decomposition of TiH2 studied in situ by synchrotron X-ray and neutron diffraction. Acta Mater. 59 (2011) 6318-6330.
DOI: 10.1016/j.actamat.2011.06.042
Google Scholar
[16]
G. Lapi, C. Alvani, F. Varsano, S. Kaciulis, R. Montanari, A. Varone, M. Gambini, M. Vellini. Effect of heat treatments on TiH2: surface and hydrogen release. Materials Science Forum 879 (2016) 2032-2037.
DOI: 10.4028/www.scientific.net/msf.879.2032
Google Scholar
[17]
Q. Wang, J. Fan, S. Zhang, Y. Yun, J. Zhang, P. Zhang, J. Hu, L. Wang, G. Shao. In situ coupling of Ti2O with rutile TiO2 as a core-shell structure and its photocatalysis performance. RSC Adv. 7 (2017), 54662–54667.
DOI: 10.1039/c7ra10347f
Google Scholar