[1]
G. Lütjering, J. C. Williams, Titanium, Springer-Verlag, Berlin, Heidelberg (2003).
Google Scholar
[2]
H. J. Rack and J. I. Qazi, Titanium alloys for biomedical applications, Mater Sci Eng C, 26 (2006) 1269–1277.
Google Scholar
[3]
M. Niinomi, Mechanical properties of biomedical titanium alloys, Mater Sci Eng A, 243 (1998) 231-236.
Google Scholar
[4]
S. G. Steinemann, Titanium — the material of choice?, Periodontol 17 (1998) 7–21.
Google Scholar
[5]
T. Ahmed and H. J. Rack, Alloy of titanium, zirconium, niobium and tantalum for prosthetics, US Patent: US 5871595 A, (1999).
Google Scholar
[6]
M. Tane et al., Low Young's modulus of Ti–Nb–Ta–Zr alloys caused by softening in shear moduli c' and c44 near lower limit of body-centered cubic phase stability. Acta Mater 2010;58:6790–6798.
DOI: 10.1016/j.actamat.2010.09.007
Google Scholar
[7]
P. L. Ferrandini, F. F. Cardoso, S. A. Souza, C. R. Afonso, and R. Caram: Aging response of the Ti–35Nb–7Zr–5Ta and Ti–35Nb–7Ta alloys, J Alloys Compd 433 (2007) 207–210.
DOI: 10.1016/j.jallcom.2006.06.094
Google Scholar
[8]
J. I. Qazi, H. J. Rack, and B. Marquardt: High-strength metastable beta-titanium alloys for biomedical applications, JOM 56 (2004) 49–51.
DOI: 10.1007/s11837-004-0253-9
Google Scholar
[9]
M. Nakai et al., Effect of oxygen content on microstructure and mechanical properties of biomedical Ti-29-Nb-13Ta-4.6Zr alloy under solutionized and aged conditions, Mater Trans, 50 (2009) 2716-2720.
DOI: 10.2320/matertrans.ma200904
Google Scholar
[10]
M. Niinomi, M. Nakai, M. Hendrickson, P. Nandwana, T. Alam, D. Choudhuri, R. Banerjee: Influence of oxygen on omega phase stability in the Ti-29-Nb-13Ta-4.6Zr alloy, Scripta Mater 123 (2016) 144-148.
DOI: 10.1016/j.scriptamat.2016.06.027
Google Scholar
[11]
J. Stráský et al., Increasing strength of a biomedical Ti-Nb-Ta-Zr alloy by alloying with Fe, Si and O, J. Mech. Behav Biomed Mater 71, (2017), p.329–336.
DOI: 10.1016/j.jmbbm.2017.03.026
Google Scholar
[12]
P. Waldner and G. Eriksson, Thermodynamic modelling of the system titanium-oxygen. Calphad 23 (1999) 189–218.
DOI: 10.1016/s0364-5916(99)00025-5
Google Scholar
[13]
F. Geng, M. Niinomi, M. Nakai, Observation of yielding and strain hardening in a titanium alloy having high oxygen content. Mater Sci Eng A 528 (2011) 5435–5445.
DOI: 10.1016/j.msea.2011.03.064
Google Scholar
[14]
M. Tane et al. Elastic-modulus enhancement during room-temperature aging and its suppression in metastable Ti-Nb based alloys with low body-centered cubic phase stability Acta Mater 102 (2016) 373-384.
DOI: 10.1016/j.actamat.2015.09.030
Google Scholar
[15]
Y.L. Hao, S.J. Li, S.Y. Sun, R. Yang, Effect of Zr and Sn on Young's modulus and superelasticity of Ti–Nb based alloys. Mater Sci Eng A 441 (2006) 112-118.
DOI: 10.1016/j.msea.2006.09.051
Google Scholar
[16]
D. Preisler, K. Vaclavova, J. Strasky, M. Janecek, P. Harcuba, Microstructure and mechanical properties of Ti-Nb-Zr-Ta-O biomedical alloy, Conference Metal 2016, (2016) 1509-1513.
Google Scholar
[17]
J. Šmilauerová, M. Janeček, P. Harcuba, J. Stráský, J. Veselý, R. Kužel, H.J. Rack, Ageing response of sub-transus heat treated Ti-6.8Mo-4.5Fe-1.5Al alloy, J Alloys Comp 724 (2017)373-380.
DOI: 10.1016/j.jallcom.2017.07.036
Google Scholar