[1]
Abbott A., Biology's new dimension. In: Nature. 424, 6951 (2003) 870-872.
Google Scholar
[2]
Weibel D. B.;Whitesides G. M., Applications of microfluidics in chemical biology. In: Curr. Opin. Chem. Biol. 10, 6 (2006) 584-591.
Google Scholar
[3]
SCHÜGERL, K., Reaktionstechnische Grundlagen zur Auslegung und zum Betrieb von Bioreaktoren, Teil 1. Chemieingenieurtechnik, 1983, pp.123-134.
DOI: 10.1002/cite.330551203
Google Scholar
[4]
Ai, W., Guo, S., Qin, L., Tang, Y., Development of a ground-based micro-algae photo-bioreactor. In: Advances in Space Research 41, (5) (2008) 742-747.
DOI: 10.1016/j.asr.2007.06.060
Google Scholar
[5]
Rivaldi J.D., Sarruh B.F., Da Silva S.S., An evaluation of different bioreactor configurations with immobilized yeast for bioethanol production. In: International Journal of Chemical Reactor Engineering, 6, (2008), A115.
DOI: 10.2202/1542-6580.1814
Google Scholar
[6]
Julien G, Thierry C, Patrice M Journal of Micromechanics and Microengineering. 17 (2007) 96.
Google Scholar
[7]
Au AK, Lee W, Folch A., Mail-Order Microfluidics: Evaluation of Stereolithography for the Production of Microfluidic Devices. In: Lab on a Chip.14, (2014) 1294–1301.
DOI: 10.1039/c3lc51360b
Google Scholar
[8]
Sugioka K, Hanada Y, Midorikawa K., Three-dimensional femtosecond laser micromachining of photosensitive glass for biomicrochips. In: Laser & Photonics Reviews. 4, (2010) 386–400.
DOI: 10.1002/lpor.200810074
Google Scholar
[9]
Wilson ME, Kota N, Kim Y, Wang Y, Stolz DB, LeDuc PR, Ozdoganlar OB. Fabrication of circular microfluidic channels by combining mechanical micromilling and soft lithography. In: Lab Chip. 11 (2011) 1550– 5.
DOI: 10.1039/c0lc00561d
Google Scholar
[10]
Wintermantel E., Ha S.-W., Medizintechnik - Life Science Engineering".Berlin Heidelberg: Springer-Verlag Berlin Heidelberg (2009), 5.
Google Scholar
[11]
Becker H., Gärtner C, Polymer microfabrication methods formicrofluidic analytical applications. In: Electrophoresis 21 (2000) 12-26.
DOI: 10.1002/(sici)1522-2683(20000101)21:1<12::aid-elps12>3.0.co;2-7
Google Scholar
[12]
Becker H., Gärtner C., Polymer microfabrication technologies for microfluidic systems. In: Eyrolles 390 (2008).
Google Scholar
[13]
Webster A., Dyer C., Haswell S. J. Greenmann J., A microfluidicdevice for tissue biopsy culture and interrogation. In: Chem Technol Biot. 2 (2010) 1005-1007.
Google Scholar
[14]
Steigert J, Haeberle S, Brenner T, Müller C, Steinert CP, Koltay P, Gottschlich N, Reinecke H, Rühe J, Zengerle R, Ducrée J., Rapid prototyping of microfluidic chipsin COC In: Journal of Micromechanics and Microengineering. 17 (2007) 333.
DOI: 10.1088/0960-1317/17/2/020
Google Scholar
[15]
Becke C., Prozesskraftrichtungsangepasste Frässtrategien zur schädigungsarmen Bohrungsbearbeitung an faserverstärkten Kunststoffen, Dissertation In Institut für Produktionstechnik", (2011).
Google Scholar
[16]
Guckenberger D. J., de Groot T. E., Wan A. M. D., Beebe D. J., Young E. W. K., Micromilling: A method for ultra-rapid prototyping of plastic microfluidic devices, In: Lab Chip. 6 (2015) 2364- 78.
DOI: 10.1039/c5lc00234f
Google Scholar
[17]
Jung W.-C., Heo Y.-M., Yoon G.-S., Shin K.-H., Chang S.-H., Kim G.-H., Cho M.-W., Micro Machining of Injection Mold Inserts for Fluidic Channel of Polymeric Biochips, In: Sensors (2007) 1643- 54.
DOI: 10.3390/s7081643
Google Scholar