Fabrication and Validation by Micromilling for Bioreactor Prototyping

Article Preview

Abstract:

Bioreactor systems for cultivating cells in Life Sciences have been widely used for decades. Recently, there is a trend towards miniaturization, disposables and even micro platforms that fulfill increasing demands strongly aiming for production and testing of novel pharmaceutical products. Miniaturized bioreactors allow low power consumption, portability and reduced space requirements and utilize smaller volumes of reagents and samples [1,2]. A recursive strategy is necessary for optimizing the design and the manufacture of such miniaturized bioreactors. For the fabrication of these prototypes utilized micro-milling. Micro milling is a mechanical process which is commonly applied to create micro-structures in metals, e.g. aluminum and steel, or polymers, e.g. poly carbonate substrates. The structures and geometries are generated by utilizing computer aided design. By means of computer-aided manufacturing, the machining operations are implemented and then transferred to the machine tool. The machine tool moves the cutting tools with certain speeds, feeds and traverse ranges to the substrate. Micro milling has the advantage that the materials are generally not degraded by chemical substances, heating procedures or electromagnetic radiation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2448-2453

Citation:

Online since:

December 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Abbott A., Biology's new dimension. In: Nature. 424, 6951 (2003) 870-872.

Google Scholar

[2] Weibel D. B.;Whitesides G. M., Applications of microfluidics in chemical biology. In: Curr. Opin. Chem. Biol. 10, 6 (2006) 584-591.

Google Scholar

[3] SCHÜGERL, K., Reaktionstechnische Grundlagen zur Auslegung und zum Betrieb von Bioreaktoren, Teil 1. Chemieingenieurtechnik, 1983, pp.123-134.

DOI: 10.1002/cite.330551203

Google Scholar

[4] Ai, W., Guo, S., Qin, L., Tang, Y., Development of a ground-based micro-algae photo-bioreactor. In: Advances in Space Research 41, (5) (2008) 742-747.

DOI: 10.1016/j.asr.2007.06.060

Google Scholar

[5] Rivaldi J.D., Sarruh B.F., Da Silva S.S., An evaluation of different bioreactor configurations with immobilized yeast for bioethanol production. In: International Journal of Chemical Reactor Engineering, 6, (2008), A115.

DOI: 10.2202/1542-6580.1814

Google Scholar

[6] Julien G, Thierry C, Patrice M Journal of Micromechanics and Microengineering. 17 (2007) 96.

Google Scholar

[7] Au AK, Lee W, Folch A., Mail-Order Microfluidics: Evaluation of Stereolithography for the Production of Microfluidic Devices. In: Lab on a Chip.14, (2014) 1294–1301.

DOI: 10.1039/c3lc51360b

Google Scholar

[8] Sugioka K, Hanada Y, Midorikawa K., Three-dimensional femtosecond laser micromachining of photosensitive glass for biomicrochips. In: Laser & Photonics Reviews. 4, (2010) 386–400.

DOI: 10.1002/lpor.200810074

Google Scholar

[9] Wilson ME, Kota N, Kim Y, Wang Y, Stolz DB, LeDuc PR, Ozdoganlar OB. Fabrication of circular microfluidic channels by combining mechanical micromilling and soft lithography. In: Lab Chip. 11 (2011) 1550– 5.

DOI: 10.1039/c0lc00561d

Google Scholar

[10] Wintermantel E., Ha S.-W., Medizintechnik - Life Science Engineering".Berlin Heidelberg: Springer-Verlag Berlin Heidelberg (2009), 5.

Google Scholar

[11] Becker H., Gärtner C, Polymer microfabrication methods formicrofluidic analytical applications. In: Electrophoresis 21 (2000) 12-26.

DOI: 10.1002/(sici)1522-2683(20000101)21:1<12::aid-elps12>3.0.co;2-7

Google Scholar

[12] Becker H., Gärtner C., Polymer microfabrication technologies for microfluidic systems. In: Eyrolles 390 (2008).

Google Scholar

[13] Webster A., Dyer C., Haswell S. J. Greenmann J., A microfluidicdevice for tissue biopsy culture and interrogation. In: Chem Technol Biot. 2 (2010) 1005-1007.

Google Scholar

[14] Steigert J, Haeberle S, Brenner T, Müller C, Steinert CP, Koltay P, Gottschlich N, Reinecke H, Rühe J, Zengerle R, Ducrée J., Rapid prototyping of microfluidic chipsin COC In: Journal of Micromechanics and Microengineering. 17 (2007) 333.

DOI: 10.1088/0960-1317/17/2/020

Google Scholar

[15] Becke C., Prozesskraftrichtungsangepasste Frässtrategien zur schädigungsarmen Bohrungsbearbeitung an faserverstärkten Kunststoffen, Dissertation In Institut für Produktionstechnik", (2011).

Google Scholar

[16] Guckenberger D. J., de Groot T. E., Wan A. M. D., Beebe D. J., Young E. W. K., Micromilling: A method for ultra-rapid prototyping of plastic microfluidic devices, In: Lab Chip. 6 (2015) 2364- 78.

DOI: 10.1039/c5lc00234f

Google Scholar

[17] Jung W.-C., Heo Y.-M., Yoon G.-S., Shin K.-H., Chang S.-H., Kim G.-H., Cho M.-W., Micro Machining of Injection Mold Inserts for Fluidic Channel of Polymeric Biochips, In: Sensors (2007) 1643- 54.

DOI: 10.3390/s7081643

Google Scholar