Creep Property of Boron Added 9Cr Heat Resistant Steels after Welding

Article Preview

Abstract:

Although welding results in premature failure by type IV fracture under high temperature creep conditions, the alloy design of light elements such as boron addition and nitrogen reduction enhances the creep lifetime of 9Cr heat resistant steel. In particular, the simulated heat affected zone (SHAZ) sample of new 9Cr steel (called TA steel) shows about 10 times longer creep lifetime than that of the standard Gr. 91 steel. The welded TA steel is thus expected to exhibit good creep properties because its SHAZ sample has coarser grains and suppresses type IV fracture. The preservation of base metal’s microstructure after welding results from the precipitate morphology, such as high grain boundary coverage by precipitates and low amount of MX being nucleation sites of ferrite grains during the a-g phase transformation. In addition, the increase of stability of M23C6 affects high pinning pressure toward grain boundary migration upon rapid heating during welding. First-principles calculations confirm the increased stability when boron is absorbed by M23C6. Moreover, the calculations reveals that boron decreases the coherency between matrix and M23C6, suppressing grain coarsening during creep tests in TA steel. It is concluded that the increased microstructural stability during welding and long high temperature exposure generates the elongated creep lifetime in welded TA steel including about 0.01 wt% boron and less than 0.01 wt% nitrogen.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

340-345

Citation:

Online since:

December 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Lenzen, Life cycle energy and greenhouse gas emissions of nuclear energy: A review, Energy Conv. Manage. 49 (2008) 2177-2199.

DOI: 10.1016/j.enconman.2008.01.033

Google Scholar

[2] H. Kimura, T. Sato, C. Bergins, S. Imano, E. Saito, Development of technologies for improving efficiency of large coal-fired thermal power plants, Hitachi Review 60 (2011) 365-371.

Google Scholar

[3] F. Masuyama, Creep degradation in welds of Mod. 9Cr-1Mo steel, Int. J. Press. Vessels Pip. 83 (2006) 819-825.

DOI: 10.1016/j.ijpvp.2006.08.010

Google Scholar

[4] M. Matsui, M. Tabuchi, T. Watanabe, K. Kubo, J. Kinugawa, F. Abe, Degradation of creep strength in welded joint of 9%Cr steel, ISIJ Int. 41 (2001) S126-S130.

DOI: 10.2355/isijinternational.41.suppl_s126

Google Scholar

[5] T. Matsunaga, H. Hongo, M. Tabuchi, R. Sahara, Suppression of grain refinement in heat- affected zone of 9Cr-3W-3Co-VNb steels, Mater. Sci. Eng. A, 655 (2016) 168-174.

DOI: 10.1016/j.msea.2015.12.095

Google Scholar

[6] T. Matsunaga, H. Hongo, M. Tabuchi, M. Souissi, R. Sahara, H.C. Whitt, T.K. Payton, W. Zhang, M.J. Mills, Submitted.

Google Scholar

[7] I. Fedorova, A. Kostka, E. Tkachev, A. Belyakov, R. Kaibyshev, Tempering behavior of a low nitrogen boron-added 9%Cr steel, Mater. Sci. Eng. A. 662 (2016) 443-455.

DOI: 10.1016/j.msea.2016.03.092

Google Scholar

[8] P.E. Blochl, Projector augmented-wave method, Phys. Rev. B. 50 (1994) 17953-17979.

DOI: 10.1103/physrevb.50.17953

Google Scholar

[9] G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B. 59 (1999) 1758-1775.

DOI: 10.1103/physrevb.59.1758

Google Scholar

[10] G. Kresse, J. Hafner, Ab initio molecular dynamics for liquid metals, Phys. Rev. B. 47 (1993) 558-561.

DOI: 10.1103/physrevb.47.558

Google Scholar

[11] G. Kresse, J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B. 54 (1996) 11169-11186.

DOI: 10.1103/physrevb.54.11169

Google Scholar

[12] R. Sahara, T. Matsunaga, H. Hongo, M. Tabuchi, Theoretical investigation of stabilizing mechanism by boron in body-centered cubic iron through (Fe, Cr)23(C, B)6 precipitates, Metall. Mater. Trans. A. 47 (2016) 2487-2497.

DOI: 10.1007/s11661-016-3397-7

Google Scholar

[13] C.M. Fang, M.H.F. Sluiter, M.A. van Huis, C.K. Ande, H.W. Zandbergen, Origin of Predominance of Cementite among Iron Carbides in Steel at Elevated Temperature, Phys. Rev. Lett. 105 (2010) 055503.

DOI: 10.1103/physrevlett.105.055503

Google Scholar

[14] C.M. Fang, M.A. van Huis, M.H.F. Sluiter, H.W. Zandbergen, Stability, structure and electronic properties of γ-Fe23C6 from first-principles theory, Acta Mater. 58 (2010) 2968-2977.

DOI: 10.1016/j.actamat.2010.01.025

Google Scholar

[15] N.I. Medvedeva, D.C. Van Aken, J.E. Medvedeva, Stability of binary and ternary M23C6 carbides from first principles, Comput. Mater. Sci. 96 (2015) 159-164.

DOI: 10.1016/j.commatsci.2014.09.016

Google Scholar

[16] C.S. Smith, Grains, phases, and interfaces–an interpretation of microstructure, Trans. Met. Soc. AIME. 175 (1948) 15-51.

Google Scholar

[17] F. Ishikawa, T. Takahashi, T. Ochi, Intragranular ferrite nucleation in medium-carbon vanadium steels, Metall. Mater. Trans. A. 25 (1994) 929-936.

DOI: 10.1007/bf02652268

Google Scholar