Effect of Ausforming on Creep Strength of G91 Heat-Resistant Steel

Article Preview

Abstract:

The major challenge in a heat-resistant steel is to generate thermally stable microstructures that allow increasing the operating temperature, which will improve the thermal efficiency of the power plant without diminishing strength or time to rupture. The strengthening mechanism in tempered martensitic 9Cr steels comes mainly from the combination of solid solution effect and of precipitation hardening by fine MX carbo-nitrides, which enhance the sub-boundary hardening. This work is focused on the effect of ausforming processing on MX nanoprecipitation, on both their distribution and number density, during the subsequent tempering heat treatment. The creep strength at 700 oC was evaluated by small punch creep tests. The creep results after ausforming were compared to those obtained after conventional heat treatment concluding, in general, that ausforming boosts the creep strength of the steel at 700 oC. Therefore, conventional ausforming thermomechanical treatment is a promising processing route to raise the operating temperature of 9Cr heat-resistant steels.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

400-406

Citation:

Online since:

December 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K.H. Mayer, F. Masuyama, 2 - The development of creep-resistant steels, Creep-Resistant Steels, Woodhead Publishing, 2008, pp.15-77.

DOI: 10.1533/9781845694012.1.15

Google Scholar

[2] R.L. Klueh, N. Hashimoto, P.J. Maziasz, Scr. Mater. 53 (2005) 275-280.

Google Scholar

[3] S. Hollner, B. Fournier, J. Le Pendu, T. Cozzika, I. Tournié, J.C. Brachet, A. Pineau, J. Nuc. Mater. 405 (2010) 101-108.

DOI: 10.1016/j.jnucmat.2010.07.034

Google Scholar

[4] L. Tan, J.T. Busby, P.J. Maziasz, Y. Yamamoto, J. Nuc. Mater. 441 (2013) 713-717.

Google Scholar

[5] J. Vivas, C. Celada-Casero, D. San Martín, M. Serrano, E. Urones-Garrote, P. Adeva, M.M. Aranda, C. Capdevila, Metall. Mater. Trans. A 47A (2016) 5344-5351.

DOI: 10.1007/s11661-016-3596-2

Google Scholar

[6] J. Vivas, C. Capdevila, J. Jimenez, M. Benito-Alfonso, D. San-Martin, Metals 7 (2017) 236.

DOI: 10.3390/met7070236

Google Scholar

[7] G. Miyamoto, N. Iwata, N. Takayama, T. Furuhara, Acta Mater. 60 (2012) 1139-1148.

Google Scholar

[8] S. Morito, H. Yoshida, T. Maki, X. Huang, Mater. Sci. Eng. A 438 (2006) 237–240.

Google Scholar

[9] E.I. Galindo-Nava, P.E.J. Rivera-Díaz-del-Castillo, Acta Mater. 98 (2015) 81–93.

Google Scholar

[10] E.I. Galindo-Nava, P.E.J. Rivera-Díaz-del-Castillo, Scr. Mater. 110 (2016) 96-100.

Google Scholar

[11] C. Cayron, J Appl Crystallogr. 40 (2007) 1183–1188.

Google Scholar

[12] B.E. Warren and B.L. Averbach, J.Appl.Phys. 21 (1950) 595-599.

Google Scholar

[13] R.L. Klueh, N. Hashimoto, P.J. Maziasz, J. Nuc. Mater. 367–370 (2007) 48-53.

Google Scholar