Use of Novel Welding Technologies for High-Entropy Alloys Joining

Article Preview

Abstract:

Laser beam welding and friction stir welding of high entropy alloys (HEA) of the CoCrFeNiMn system were studied. The HEAs were produced by self-propagating high-temperature synthesis (SHS). Along with the principal elements, Al, C, S, and Si impurities were detected in the composition of the alloys. The as-cast alloys consisted of columnar fcc grains with coarse precipitates of MnS and fine Cr-rich M23C6 carbides. Laser beam welding resulted in the formation of a defect-free weld joint. Precipitation of nanoscale B2 phase particles in the weld zone leaded to a pronounced increase in microhardness from ~150 HV of the base material to ~220 HV in the fusion zone. Friction stir welding (FSW) of a recrystallized state of the HEA with the average grain size of 3-5 μm resulted in the formation of a fine microstructure with a grain size of ~1.5 μm in the most strained area. Noticeable rise in strength and some decrease in ductility of the processed alloy in comparison with the initial condition can be associated with the formation of nanosized M23C6 carbides.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

919-924

Citation:

Online since:

December 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.-W. Yeh, S.-K. Chen, S.-J. Lin, J.-Y. Gan, T.-S. Chin, T.-T. Shun, C.-H. Tsau, S.-Y. Chang, Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater. 6 (2004) 299–303.

DOI: 10.1002/adem.200300567

Google Scholar

[2] D. B. Miracle, O. N. Senkov, A critical review of high entropy alloys and related concepts, Acta Mater. 122 (2017) 448–511.

DOI: 10.1016/j.actamat.2016.08.081

Google Scholar

[3] B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng. A 375 (2004) 213–218.

DOI: 10.1016/j.msea.2003.10.257

Google Scholar

[4] Otto, F.; Yang, Y.; Bei, H.; George, E. P. P. Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys. Acta Mater. 2013, 61, 2628–2638.

DOI: 10.1016/j.actamat.2013.01.042

Google Scholar

[5] F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, E.P. George, The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy, Acta Mater. 61 (2013) 5743-5755.

DOI: 10.1016/j.actamat.2013.06.018

Google Scholar

[6] B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, A fracture-resistant high-entropy alloy for cryogenic applications, 345(6201) Science 1153-1158.

DOI: 10.1126/science.1254581

Google Scholar

[7] A. Gali, E.P. George, Tensile properties of high- and medium-entropy alloys, Intermetallics. 39 (2013) 74–78.

DOI: 10.1016/j.intermet.2013.03.018

Google Scholar

[8] J.Y. He, H. Wang, H.L. Huang, X.D. Xu, M.W. Chen, Y. Wu, X.J. Liu, T.G. Nieh, K. An, Z.P. Lu, A precipitation-hardened high-entropy alloy with outstanding tensile properties, Acta Mater. 102 (2016) 187–196.

DOI: 10.1016/j.actamat.2015.08.076

Google Scholar

[9] Z. Wu, S.A. David, Z. Feng, H. Bei, Weldability of a high entropy CrMnFeCoNi alloy, Scr. Mater. 124 (2016) 81–85.

DOI: 10.1016/j.scriptamat.2016.06.046

Google Scholar

[10] Z.G. Zhu, Y.F. Sun, F.L. Ng, M.H. Goh, P.K. Liaw, H. Fujii, Q.B. Nguyen, Y. Xu, C.H. Shek, S.M.L. Nai, J. Wei, Friction-stir welding of a ductile high entropy alloy: microstructural evolution and weld strength, Mater. Sci. Eng. A. 711 (2018) 524–532.

DOI: 10.1016/j.msea.2017.11.058

Google Scholar

[11] M.-G. Jo, H.-J. Kim, M. Kang, P.P. Madakashira, E.S. Park, J.-Y. Suh, D.-I. Kim, S.-T. Hong, H.N. Han, Microstructure and mechanical properties of friction stir welded and laser welded high entropy alloy CrMnFeCoNi, Met. Mater. Int. 24 (2018) 73–83.

DOI: 10.1007/s12540-017-7248-x

Google Scholar

[12] M. Klimova, N. Stepanov, D. Shaysultanov, R. Chernichenko, N. Yurchenko, V. Sanin, S. Zherebtsov, Microstructure and mechanical properties evolution of the Al, C-containing CoCrFeNiMn-type high-entropy alloy during cold rolling, Materials. 11 (2017) 53.

DOI: 10.3390/ma11010053

Google Scholar

[13] T. Gladman, Precipitation hardening in metals, Mater. Sci. Technol. 15 (1999) 30–36.

Google Scholar

[14] N.D. Stepanov, D.G. Shaysultanov, R.S. Chernichenko, N.Y. Yurchenko, S. V Zherebtsov, M.A. Tikhonovsky, G.A. Salishchev, Effect of thermomechanical processing on microstructure and mechanical properties of the carbon-containing CoCrFeNiMn high entropy alloy, J. Alloys Compd. 693 (2017) 394–405.

DOI: 10.1016/j.jallcom.2016.09.208

Google Scholar

[15] N.D. Stepanov, D.G. Shaysultanov, M.S. Ozerov, S.V. Zherebtsov, G.A. Salishchev, Second phase formation in the CoCrFeNiMn high entropy alloy after recrystallization annealing, Mater. Lett. 185 (2016) 1–4.

DOI: 10.1016/j.matlet.2016.08.088

Google Scholar

[16] P. Kürnsteiner, M.B. Wilms, A. Weisheit, P. Barriobero-Vila, E.A. Jägle, D. Raabe, Massive nanoprecipitation in an Fe-19Ni-xAl maraging steel triggered by the intrinsic heat treatment during laser metal deposition, Acta Mater. 129 (2017) 52–60.

DOI: 10.1016/j.actamat.2017.02.069

Google Scholar