Optical Absorption Spectroscopy of DNA-Wrapped HiPco Carbon Nanotubes

Article Preview

Abstract:

Optical absorption spectroscopy provides evidence for individually dispersed carbon nanotubes. A common method to disperse SWCNTs into aqueous solution is to sonicate the mixture in the presence of a double-stranded DNA (dsDNA). In this paper, optical characterization of dsDNA-wrapped HiPco carbon nanotubes (dsDNA-SWCNT) was carried out using near infrared (NIR) spectroscopy and photoluminescence (PL) experiments. The findings suggest that SWCNT dispersion is very good in the environment of DNA existing. Additionally, its dispersion depends on dsDNA concentration.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

95-99

Citation:

Online since:

January 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Sattler K, Scanning tunneling microscopy of carbon nanotubes and nanocones. Carbon 1995; 33: 915-920.

DOI: 10.1016/0008-6223(95)00020-e

Google Scholar

[2] Tasis D, Tagmatarchis N, Bianco A and Prato M, Chemistry of Carbon Nanotubes. Chem. Rev. 2006; 106: 1105-1136.

DOI: 10.1021/cr050569o

Google Scholar

[3] Tekin N, Beyaz SK, Kara A, Simsek E, Lamari FD, Cakmak G and Guney HY, The synthesis of covalent bonded single-walled carbon nanotube/polyvinylimidazole composites by in situ polymerization and their physical characterization. Polymer Composites 2012; 33: 1255-1262.

DOI: 10.1002/pc.22243

Google Scholar

[4] B. Koh, J. B. Park, X. Hou, W. Cheng, Comparative dispersion studies of single-walled carbon nanotubes in aqueous solution, J. Phys. Chem. B. 115 (2011) 2627-2633.

DOI: 10.1021/jp110376h

Google Scholar

[5] Movia, D.; Canto, E. D.; Giordanni, S. Purified and Oxidized Single-Walled Carbon Nanotubes as Robust Near-IR Fluorescent Probes for Molecular Imaging. J. Phys. Chem. C 2010, 114, 18407−18413.

DOI: 10.1021/jp1067318

Google Scholar

[6] A. Star, Label-free detection of DNA hybridization using carbon nanotube network field-effect transistors, Proc. Natl. Acad. Sci. USA, 103 (2006) 921-926.

DOI: 10.1073/pnas.0504146103

Google Scholar

[7] J. Chen, S. Chen, X. Zhao, L. V. Kuznetsova, S. S. Wong, I. Ojima, Functionalized Single-Walled Carbon Nanotubes as Rationally Designed Vehicles for Tumor-Targeted Drug Delivery, J. Am. Chem. Soc. 130 (2008) 16778-16785.

DOI: 10.1021/ja805570f

Google Scholar

[8] V. A. Sinani, M. K. Gheith, A. A. Yaroslavov, A. A. Rakhnyanskaya, K. Sun, A. A. Mamedov, J. P. Wicksted, N. A. Kotov, Aqueous Dispersions of Single-wall and Multiwall Carbon Nanotubes with Designed Amphiphilic Polycations, J. Am. Chem. Soc. 127 (2005) 3463-3472.

DOI: 10.1021/ja045670+

Google Scholar

[9] M. Zheng, A. Jagota, M. S. Strano, A. P. Santos, P. Barone, S. G. Chou, B. A. Diner, M. S. Dresselhaus, R. S. McLean, G.B. Onoa, G.G. Samsonidze, E.D. Semke, M. Usrey, D. J. Walls, Structure-based carbon nanotube sorting by sequence-dependent DNA assembly, Science. 302 (2003) 1545-1548.

DOI: 10.1126/science.1091911

Google Scholar

[10] M. Zheng, A. Jagota, E. D. Semke, B. A. Diner, R. S. Mclean, S. R. Lustig, R. E. Richardson, N. G. Tassi, DNA-assisted dispersion and separation of carbon nanotubes. Nature materials. 2 (2003) 338-342.

DOI: 10.1038/nmat877

Google Scholar

[11] S. H. Jeong, K. K. Kim, S. J. Jeong, K. H. An, S. H. Lee, Y. H. Lee, Optical absorption spectroscopy for determining carbon nanotube concentration in solution. Synthetic Metals 157 (2007) 570-574.

DOI: 10.1016/j.synthmet.2007.06.012

Google Scholar

[12] Michael J. O'Connell, Sergei M. Bachilo, Chad B. Huffman, Valerie C. Moore, Michael S. Strano, Erik H. Haroz, Kristy L. Rialon,Peter J. Boul, William H. Noon, Carter Kittrell, Jianpeng Ma, Robert H. Hauge, R. Bruce Weisman, Richard E. Smalley. Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes. Science. 297 (2002) 593–596.

DOI: 10.1126/science.1072631

Google Scholar

[13] C. H. Song, P. E. Pehrsson and W. Zhao, Recoverable solution reaction of HiPco carbon nanotubes with hydrogen peroxide. J. Phys. Chem. B. 109 (2005) 21634-21639.

DOI: 10.1021/jp053077o

Google Scholar

[14] R. B. Weisman, S. M. Bachilo, Dependence of Optical Transition Energies on Structure for Single-Walled Carbon Nanotubes in Aqueous Suspension: An Empirical Kataura Plot, Nano Lett. 3 (2003) 1235-1238.

DOI: 10.1021/nl034428i

Google Scholar

[15] E.H. Zhao, B. Ergul, W. Zhao, Caffeine's antioxidant potency optically sensed with double-stranded DNA-Encased single-walled carbon nanotubes, J. Phys. Chem. B. 119 (2015) 4068-4075.

DOI: 10.1021/acs.jpcb.5b00708

Google Scholar

[16] Y. Ishibashi, M. Ito, Y. Homma, K. Umemura, Monitoring the antioxidant effects of catechin using single-walled carbon nanotubes: Comparative analysis by near-infrared absorption and near-infrared photoluminescence, Colloids and Surfaces B: Biointerfaces. 161 (2017) 139-146.

DOI: 10.1016/j.colsurfb.2017.10.055

Google Scholar