[1]
Sattler K, Scanning tunneling microscopy of carbon nanotubes and nanocones. Carbon 1995; 33: 915-920.
DOI: 10.1016/0008-6223(95)00020-e
Google Scholar
[2]
Tasis D, Tagmatarchis N, Bianco A and Prato M, Chemistry of Carbon Nanotubes. Chem. Rev. 2006; 106: 1105-1136.
DOI: 10.1021/cr050569o
Google Scholar
[3]
Tekin N, Beyaz SK, Kara A, Simsek E, Lamari FD, Cakmak G and Guney HY, The synthesis of covalent bonded single-walled carbon nanotube/polyvinylimidazole composites by in situ polymerization and their physical characterization. Polymer Composites 2012; 33: 1255-1262.
DOI: 10.1002/pc.22243
Google Scholar
[4]
B. Koh, J. B. Park, X. Hou, W. Cheng, Comparative dispersion studies of single-walled carbon nanotubes in aqueous solution, J. Phys. Chem. B. 115 (2011) 2627-2633.
DOI: 10.1021/jp110376h
Google Scholar
[5]
Movia, D.; Canto, E. D.; Giordanni, S. Purified and Oxidized Single-Walled Carbon Nanotubes as Robust Near-IR Fluorescent Probes for Molecular Imaging. J. Phys. Chem. C 2010, 114, 18407−18413.
DOI: 10.1021/jp1067318
Google Scholar
[6]
A. Star, Label-free detection of DNA hybridization using carbon nanotube network field-effect transistors, Proc. Natl. Acad. Sci. USA, 103 (2006) 921-926.
DOI: 10.1073/pnas.0504146103
Google Scholar
[7]
J. Chen, S. Chen, X. Zhao, L. V. Kuznetsova, S. S. Wong, I. Ojima, Functionalized Single-Walled Carbon Nanotubes as Rationally Designed Vehicles for Tumor-Targeted Drug Delivery, J. Am. Chem. Soc. 130 (2008) 16778-16785.
DOI: 10.1021/ja805570f
Google Scholar
[8]
V. A. Sinani, M. K. Gheith, A. A. Yaroslavov, A. A. Rakhnyanskaya, K. Sun, A. A. Mamedov, J. P. Wicksted, N. A. Kotov, Aqueous Dispersions of Single-wall and Multiwall Carbon Nanotubes with Designed Amphiphilic Polycations, J. Am. Chem. Soc. 127 (2005) 3463-3472.
DOI: 10.1021/ja045670+
Google Scholar
[9]
M. Zheng, A. Jagota, M. S. Strano, A. P. Santos, P. Barone, S. G. Chou, B. A. Diner, M. S. Dresselhaus, R. S. McLean, G.B. Onoa, G.G. Samsonidze, E.D. Semke, M. Usrey, D. J. Walls, Structure-based carbon nanotube sorting by sequence-dependent DNA assembly, Science. 302 (2003) 1545-1548.
DOI: 10.1126/science.1091911
Google Scholar
[10]
M. Zheng, A. Jagota, E. D. Semke, B. A. Diner, R. S. Mclean, S. R. Lustig, R. E. Richardson, N. G. Tassi, DNA-assisted dispersion and separation of carbon nanotubes. Nature materials. 2 (2003) 338-342.
DOI: 10.1038/nmat877
Google Scholar
[11]
S. H. Jeong, K. K. Kim, S. J. Jeong, K. H. An, S. H. Lee, Y. H. Lee, Optical absorption spectroscopy for determining carbon nanotube concentration in solution. Synthetic Metals 157 (2007) 570-574.
DOI: 10.1016/j.synthmet.2007.06.012
Google Scholar
[12]
Michael J. O'Connell, Sergei M. Bachilo, Chad B. Huffman, Valerie C. Moore, Michael S. Strano, Erik H. Haroz, Kristy L. Rialon,Peter J. Boul, William H. Noon, Carter Kittrell, Jianpeng Ma, Robert H. Hauge, R. Bruce Weisman, Richard E. Smalley. Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes. Science. 297 (2002) 593–596.
DOI: 10.1126/science.1072631
Google Scholar
[13]
C. H. Song, P. E. Pehrsson and W. Zhao, Recoverable solution reaction of HiPco carbon nanotubes with hydrogen peroxide. J. Phys. Chem. B. 109 (2005) 21634-21639.
DOI: 10.1021/jp053077o
Google Scholar
[14]
R. B. Weisman, S. M. Bachilo, Dependence of Optical Transition Energies on Structure for Single-Walled Carbon Nanotubes in Aqueous Suspension: An Empirical Kataura Plot, Nano Lett. 3 (2003) 1235-1238.
DOI: 10.1021/nl034428i
Google Scholar
[15]
E.H. Zhao, B. Ergul, W. Zhao, Caffeine's antioxidant potency optically sensed with double-stranded DNA-Encased single-walled carbon nanotubes, J. Phys. Chem. B. 119 (2015) 4068-4075.
DOI: 10.1021/acs.jpcb.5b00708
Google Scholar
[16]
Y. Ishibashi, M. Ito, Y. Homma, K. Umemura, Monitoring the antioxidant effects of catechin using single-walled carbon nanotubes: Comparative analysis by near-infrared absorption and near-infrared photoluminescence, Colloids and Surfaces B: Biointerfaces. 161 (2017) 139-146.
DOI: 10.1016/j.colsurfb.2017.10.055
Google Scholar