[1]
Seensattayawong, Phanuphak Pandee, Impression creep properties of hypoeutectic Al-Si alloys with scandium additions. J. Materials Today: Proceedings. 532 (2018) 9440-9446.
DOI: 10.1016/j.matpr.2017.10.122
Google Scholar
[2]
JingLiu, PeiYao, Effect of minor Sc and Zr on recrystallization behavior and mechanical properties of novel Al–Zn–Mg–Cu alloys, Journal of Alloys and Compounds. 657(2016) 717-725.
DOI: 10.1016/j.jallcom.2015.10.122
Google Scholar
[3]
XiaowuHu, HongYan, Effects of rare earth Er additions on microstructure development and mechanical properties of die-cast ADC12 aluminum alloy, Journal of Alloys and Compounds. 538 (2012) 21-27.
DOI: 10.1016/j.jallcom.2012.05.089
Google Scholar
[4]
WEN S P, GAO K Y, HUANG H, NIE Z R, Synergetic effect of Er and Zr on the precipitation hardening of Al-Er-Zr alloy, J. Scripta Materialia. 65 (2011) 592-595.
DOI: 10.1016/j.scriptamat.2011.06.033
Google Scholar
[5]
N. Adibi, Introducing a multi-criteria indicator to better evaluate impacts of rare earth materials production and consumption in life cycle assessment, JOURNAL OF RARE EARTHS. 32 (2014) 288-295.
DOI: 10.1016/s1002-0721(14)60069-7
Google Scholar
[6]
Navarro J, Zhao F, Life-cycle assessment of the production of rare-earth elements for energy applications: a review, J. Front Energy Res. 55 (2014) 125-138.
DOI: 10.3389/fenrg.2014.00045
Google Scholar
[7]
Zhehan Weng, Assessing the energy requirements and global warming potential of the production of rare earth elements, Journal of Cleaner Production. 139 (2016) 1282-1297.
DOI: 10.1016/j.jclepro.2016.08.132
Google Scholar
[8]
Yang XJ, Lin A, Li X-L et al, China's ion-adsorption rare earth resources, mining consequences and preservation. Environ Dev. 8 (2013) 131-136.
Google Scholar
[9]
LinHecheng, Development status and Prospect of scandium metal, J. Rare Earth Information. 12 (2008) 31-33.
Google Scholar
[10]
Peiro´ LT, Me´ndez GV Material and energy requirement for rare earth production, JOM. 65 (2013) 1327-1340.
Google Scholar
[11]
Ehsan Vahidi, Julio Navarro, Fu Zhao, An initial life cycle assessment of rare earth oxides production from ion-adsorption clays, In Resources, Conservation and Recycling. 113 (2016) 1-11.
DOI: 10.1016/j.resconrec.2016.05.006
Google Scholar
[12]
Schulze R, Lartigue-peyrou F, Ding J, et al. Developing a Life Cycle Inventory for Rare Earth Oxides From Ion-adsorption Deposits: Key Impacts and Further Research Needs, J. Journal of Sustainable Metallurgy. 3 (2017) 753-771.
DOI: 10.1007/s40831-017-0139-z
Google Scholar
[13]
Information on https://wenku.baidu.com/view/0a0f536eff4733687e21af45b307e87101f6f863. html ?from=search.
Google Scholar
[14]
Jinglan Hong, Wei Chen et al, Life cycle assessment of caustic soda production: a case study in China. Journal of Cleaner Production. 66 (2014) 113-120.
DOI: 10.1016/j.jclepro.2013.10.009
Google Scholar
[15]
Xiaomei Y, Bin W, Application of Life Cycle Assessment in the Production of Sulfuric Acid from Pyrite-mixed Ferrous Slag. Journal of Green Science and Technology. 03 (2012) 1674-9944.
Google Scholar
[16]
Information on http://cnmlca.bjut.edu.cn/database (in Chinese, accessed 20.12.16).
Google Scholar
[17]
Di, X.H., Nie, Z.R., Yuan, B.R., Zuo, T.Y., Life cycle inventory for electricity generation in China. Int. J. Life Cycle Assess. 12 (2007) 217-224.
DOI: 10.1065/lca2007.05.331
Google Scholar
[18]
The first national census data compilation committee, 2011. Manual of pollution discharge coefficient of the pollution source census, Beijing (in Chinese).
Google Scholar