[1]
Kondalkar, V.V., Kharade, R.R., Mali, S.S., Mane, R.M., Patil, P.B., Patil, P.S., Choudhury, S., Bhosale, P.N.: Nanobrick-like WO3 thin films: Hydrothermal synthesis and electrochromic application. SUPERLATTICE MICROST, 73, 290-295 (2014).
DOI: 10.1016/j.spmi.2014.05.039
Google Scholar
[2]
Zhu, M., Meng, W., Huang, Y., Huang, Y., Zhi, C.: Proton-Insertion-Enhanced Pseudocapacitance Based on the Assembly Structure of Tungsten Oxide. ACS APPL MATER INTER, 6(21), 18901-18910 (2014).
DOI: 10.1021/am504756u
Google Scholar
[3]
Yu, M., Sun, H., Sun, X., Lu, F., Hu, T., Wang, G., Qiu, H., Lian, J.: 3D WO3 nanowires/graphene nanocomposite with improved reversible capacity and cyclic stability for lithium ion batteries. MATER LETT, 108, 29-32 (2013).
DOI: 10.1016/j.matlet.2013.06.067
Google Scholar
[4]
Li, J., Liu, X., Cui, J., Sun, J.: Hydrothermal Synthesis of Self-Assembled Hierarchical Tungsten Oxides Hollow Spheres and Their Gas Sensing Properties. ACS APPL MATER INTER, 7(19), 10108-10114 (2015).
DOI: 10.1021/am508121p
Google Scholar
[5]
Zhou, H., Shi, Y., Wang, L., Zhang, H., Zhao, C., Hagfeldt, A., Ma, T.: Notable catalytic activity of oxygen-vacancy-rich WO2.72 nanorod bundles as counter electrodes for dye-sensitized solar cells. CHEM COMMUN, 49(69), 7626-7628 (2013).
DOI: 10.1039/c3cc44518f
Google Scholar
[6]
Xi, G., Ouyang, S., Li, P., Ye, J., Ma, Q., Su, N., Bai, H., Wang, C.: Ultrathin W18O49 Nanowires with Diameters below 1 nm: Synthesis, Near-Infrared Absorption, Photoluminescence, and Photochemical Reduction of Carbon Dioxide. ANGEW CHEM INT EDIT, 51(10), 2395-2399 (2012).
DOI: 10.1002/anie.201107681
Google Scholar
[7]
Kong, Y., Sun, H., Zhao, X., Gao, B., Fan, W.: Fabrication of hexagonal/cubic tungsten oxide homojunction with improved photocatalytic activity. APPL CATAL A-GEN, 505, 447-455 (2015).
DOI: 10.1016/j.apcata.2015.05.015
Google Scholar
[8]
Santato, C., Odziemkowski, M., Ulmann, M., Augustynski, J.: Crystallographically oriented Mesoporous WO3 films: Synthesis, characterization, and applications. J AM CHEM SOC, 123(43), 10639-10649 (2001).
DOI: 10.1021/ja011315x
Google Scholar
[9]
Yin, J., Cao, H., Zhang, J., Qu, M., Zhou, Z.: Synthesis and Applications of γ-Tungsten Oxide Hierarchical Nanostructures. CRYST GROWTH DES, 13(2), 759-769 (2013).
DOI: 10.1021/cg301469u
Google Scholar
[10]
Wang, H., Ding, R., Wang, C., Ren, X., Wang, L., Lv, B.: Iron cation-induced biphase symbiosis of h-WO3/o-WO3·0.33H2O and their crystal phase transition. CRYSTENGCOMM, 19(28), 3979-3985 (2017).
DOI: 10.1039/c7ce00774d
Google Scholar
[11]
Lian, C., Xiao, X., Chen, Z., Liu, Y., Zhao, E., Wang, D., Chen, C., Li, Y.: Preparation of hexagonal ultrathin WO3 nano-ribbons and their electrochemical performance as an anode material in lithium ion batteries. NANO RES, 9(2), 435-441 (2016).
DOI: 10.1007/s12274-015-0924-6
Google Scholar
[12]
Le Houx, N., Pourroy, G., Camerel, F., Comet, M., Spitzer, D.: WO3 Nanoparticles in the 5−30 nm Range by Solvothermal Synthesis under Microwave or Resistive Heating. The Journal of Physical Chemistry C, 114(1), 155-161 (2009).
DOI: 10.1021/jp908669u
Google Scholar
[13]
Sadakane, M., Sasaki, K., Kunioku, H., Ohtani, B., Abe, R., Ueda, W.: Preparation of 3-D ordered macroporous tungsten oxides and nano-crystalline particulate tungsten oxides using a colloidal crystal template method, and their structural characterization and application as photocatalysts under visible light irradiation. JOURNAL OF MATERIALS CHEMISTRY, 20(9), 1811-1818 (2010).
DOI: 10.1039/b922416e
Google Scholar
[14]
Christou, K., Louloudakis, D., Vernardou, D., Savvakis, C., Katsarakis, N., Koudoumas, E., Kiriakidis, G.: Effect of solution chemistry on the characteristics of hydrothermally grown WO3 for electroactive applications. THIN SOLID FILMS, 594(B), 333-337 (2015).
DOI: 10.1016/j.tsf.2015.03.045
Google Scholar
[15]
Cao, S., Chen, H.: Nanorods assembled hierarchical urchin-like WO3 nanostructures: Hydrothermal synthesis, characterization, and their gas sensing properties. J ALLOY COMPD, 702, 644-648 (2017).
DOI: 10.1016/j.jallcom.2017.01.232
Google Scholar
[16]
Yao, Y., Yin, M., Yan, J., Liu, S.F.: P-type sub-tungsten-oxide based urchin-like nanostructure for superior room temperature alcohol sensor. APPL SURF SCI, 441, 277-284 (2018).
DOI: 10.1016/j.apsusc.2018.02.004
Google Scholar
[17]
Li, Q., Wang, L., Chu, D., Yang, X., Zhang, Z.: Cylindrical stacks and flower-like tungsten oxide microstructures: Controllable synthesis and photocatalytic properties. CERAM INT, 40(3), 4969-4973 (2014).
DOI: 10.1016/j.ceramint.2013.09.115
Google Scholar
[18]
Su, J., Feng, X., Sloppy, J.D., Guo, L., Grimes, C.A.: Vertically Aligned WO3 Nanowire Arrays Grown Directly on Transparent Conducting Oxide Coated Glass: Synthesis and Photoelectrochemical Properties. NANO LETT, 11(1), 203-208 (2011).
DOI: 10.1021/nl1034573
Google Scholar
[19]
Amano, F., Tian, M., Wu, G., Ohtani, B., Chen, A.: Facile Preparation of Platelike Tungsten Oxide Thin Film Electrodes with High Photoelectrode Activity. ACS APPL MATER INTER, 3(10), 4047-4052 (2011).
DOI: 10.1021/am200897n
Google Scholar
[20]
Zhou, Y., Huang, A., Ji, S., Zhou, H., Jin, P., Li, R.: Scalable Preparation of Photochromic Composite Foils with Excellent Reversibility for Light Printing. CHEM-ASIAN J, 13(4), 457-462 (2018).
DOI: 10.1002/asia.201701747
Google Scholar
[21]
Wei, Y., Hu, M., Yan, W., Wang, D., Yuan, L., Qin, Y.: Hydrothermal synthesis porous silicon/tungsten oxide nanorods composites and their gas-sensing properties to NO2 at room temperature. APPL SURF SCI, 353, 79-86 (2015).
DOI: 10.1016/j.apsusc.2015.06.064
Google Scholar
[22]
Li, J., Zhu, J., Liu, X.: Synthesis, characterization and enhanced gas sensing performance of WO3 nanotube bundles. NEW J CHEM, 37(12), 4241-4249 (2013).
DOI: 10.1039/c3nj00934c
Google Scholar
[23]
Zheng, J.Y., Song, G., Kim, C.W., Kang, Y.S.: Fabrication of (001)-oriented monoclinic WO3 films on FTO substrates. NANOSCALE, 5(12), 5279-5282 (2013).
DOI: 10.1039/c3nr00964e
Google Scholar
[24]
Huang, K., Pan, Q., Yang, F., Ni, S., Wei, X., He, D.: Controllable synthesis of hexagonal WO3 nanostructures and their application in lithium batteries. J PHYS D APPL PHYS, 41(15541715) (2008).
DOI: 10.1088/0022-3727/41/15/155417
Google Scholar
[25]
Zeng, W., Miao, B., Li, T., Zhang, H., Hussain, S., Li, Y., Yu, W.: Hydrothermal synthesis, characterization of h-WO3 nanowires and gas sensing of thin film sensor based on this powder. THIN SOLID FILMS, 584, 294-299 (2015).
DOI: 10.1016/j.tsf.2014.12.037
Google Scholar
[26]
Rout, C.S., Hegde, M., Rao, C.N.R.: H2S sensors based on tungsten oxide nanostructures. Sensors and Actuators B: Chemical, 128(2), 488-493 (2008).
DOI: 10.1016/j.snb.2007.07.013
Google Scholar
[27]
Chen, D.L., Gao, L.: A new and facile route to ultrafine nanowires, superthin flakes and uniform nanodisks of nickel hydroxide. CHEM PHYS LETT, 405(1-3), 159-164 (2005).
DOI: 10.1016/j.cplett.2005.01.121
Google Scholar
[28]
Guo, C., Yin, S., Yan, M., Kobayashi, M., Kakihana, M., Sato, T.: Morphology-Controlled Synthesis of W18O49 Nanostructures and Their Near-Infrared Absorption Properties. INORG CHEM, 51(8), 4763-4771 (2012).
DOI: 10.1021/ic300049j
Google Scholar
[29]
Chang, M., Chou, L., Chueh, Y., Lee, Y., Hsieh, C., Chen, C., Lan, Y., Chen, L.: Nitrogen-doped tungsten oxide nanowires: Low-temperature synthesis on Si, and electrical, optical, and field-emission properties. SMALL, 3(4), 658-664 (2007).
DOI: 10.1002/smll.200600562
Google Scholar
[30]
Vemuri, R.S., Bharathi, K.K., Gullapalli, S.K., Ramana, C.V.: Effect of Structure and Size on the Electrical Properties of Nanocrystalline WO3 Films. ACS APPL MATER INTER, 2(9), 2623-2628 (2010).
DOI: 10.1021/am1004514
Google Scholar
[31]
Ou, J.Z., Yaacob, M.H., Breedon, M., Zheng, H.D., Campbell, J.L., Latham, K., du Plessis, J., Wlodarski, W., Kalantar-zadeh, K.: In situ Raman spectroscopy of H2 interaction with WO3 films. PHYS CHEM CHEM PHYS, 13(16), 7330-7339 (2011).
DOI: 10.1039/c0cp02050h
Google Scholar
[32]
Hai, G., Huang, J., Cao, L., Jie, Y., Li, J., Wang, X., Zhang, G.: Influence of oxygen deficiency on the synthesis of tungsten oxide and the photocatalytic activity for the removal of organic dye. J ALLOY COMPD, 690, 239-248 (2017).
DOI: 10.1016/j.jallcom.2016.08.099
Google Scholar
[33]
Wang, X., Ndegwa, P.M., Joo, H., Neerackal, G.M., Harrison, J.H., Stoeckle, C.O., Liu, H.: Reliable low-cost devices for monitoring ammonia concentrations and emissions in naturally ventilated dairy barns. ENVIRON POLLUT, 208(B), 571-579 (2016).
DOI: 10.1016/j.envpol.2015.10.031
Google Scholar