Fabrication of 1D Nanometer Tungsten Trioxide under Different Solvent System

Article Preview

Abstract:

As a cheap and stable transition metal oxide, tungsten trioxide (WO3) has received extensive attentions due to superior physical and chemical properties that could be used in electronic devices, lithium-ion batteries, gas sensors, dye sensitized solar cells, catalysts. In this study, the well-designed 1D architecture of nanowires and nanorods was successfully synthesized via a simple and facile solvethermal method with no template or additives. It is found that both solvent type and concentration of W raw material can affect the size and morphology of WO3 significantly in a regular way. Different products showed distinct photocatalytic activities during the processing of degradation methylene blue under visible light, and the underlying reasons for the different photocatalytic activities were discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1144-1151

Citation:

Online since:

January 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Kondalkar, V.V., Kharade, R.R., Mali, S.S., Mane, R.M., Patil, P.B., Patil, P.S., Choudhury, S., Bhosale, P.N.: Nanobrick-like WO3 thin films: Hydrothermal synthesis and electrochromic application. SUPERLATTICE MICROST, 73, 290-295 (2014).

DOI: 10.1016/j.spmi.2014.05.039

Google Scholar

[2] Zhu, M., Meng, W., Huang, Y., Huang, Y., Zhi, C.: Proton-Insertion-Enhanced Pseudocapacitance Based on the Assembly Structure of Tungsten Oxide. ACS APPL MATER INTER, 6(21), 18901-18910 (2014).

DOI: 10.1021/am504756u

Google Scholar

[3] Yu, M., Sun, H., Sun, X., Lu, F., Hu, T., Wang, G., Qiu, H., Lian, J.: 3D WO3 nanowires/graphene nanocomposite with improved reversible capacity and cyclic stability for lithium ion batteries. MATER LETT, 108, 29-32 (2013).

DOI: 10.1016/j.matlet.2013.06.067

Google Scholar

[4] Li, J., Liu, X., Cui, J., Sun, J.: Hydrothermal Synthesis of Self-Assembled Hierarchical Tungsten Oxides Hollow Spheres and Their Gas Sensing Properties. ACS APPL MATER INTER, 7(19), 10108-10114 (2015).

DOI: 10.1021/am508121p

Google Scholar

[5] Zhou, H., Shi, Y., Wang, L., Zhang, H., Zhao, C., Hagfeldt, A., Ma, T.: Notable catalytic activity of oxygen-vacancy-rich WO2.72 nanorod bundles as counter electrodes for dye-sensitized solar cells. CHEM COMMUN, 49(69), 7626-7628 (2013).

DOI: 10.1039/c3cc44518f

Google Scholar

[6] Xi, G., Ouyang, S., Li, P., Ye, J., Ma, Q., Su, N., Bai, H., Wang, C.: Ultrathin W18O49 Nanowires with Diameters below 1 nm: Synthesis, Near-Infrared Absorption, Photoluminescence, and Photochemical Reduction of Carbon Dioxide. ANGEW CHEM INT EDIT, 51(10), 2395-2399 (2012).

DOI: 10.1002/anie.201107681

Google Scholar

[7] Kong, Y., Sun, H., Zhao, X., Gao, B., Fan, W.: Fabrication of hexagonal/cubic tungsten oxide homojunction with improved photocatalytic activity. APPL CATAL A-GEN, 505, 447-455 (2015).

DOI: 10.1016/j.apcata.2015.05.015

Google Scholar

[8] Santato, C., Odziemkowski, M., Ulmann, M., Augustynski, J.: Crystallographically oriented Mesoporous WO3 films: Synthesis, characterization, and applications. J AM CHEM SOC, 123(43), 10639-10649 (2001).

DOI: 10.1021/ja011315x

Google Scholar

[9] Yin, J., Cao, H., Zhang, J., Qu, M., Zhou, Z.: Synthesis and Applications of γ-Tungsten Oxide Hierarchical Nanostructures. CRYST GROWTH DES, 13(2), 759-769 (2013).

DOI: 10.1021/cg301469u

Google Scholar

[10] Wang, H., Ding, R., Wang, C., Ren, X., Wang, L., Lv, B.: Iron cation-induced biphase symbiosis of h-WO3/o-WO3·0.33H2O and their crystal phase transition. CRYSTENGCOMM, 19(28), 3979-3985 (2017).

DOI: 10.1039/c7ce00774d

Google Scholar

[11] Lian, C., Xiao, X., Chen, Z., Liu, Y., Zhao, E., Wang, D., Chen, C., Li, Y.: Preparation of hexagonal ultrathin WO3 nano-ribbons and their electrochemical performance as an anode material in lithium ion batteries. NANO RES, 9(2), 435-441 (2016).

DOI: 10.1007/s12274-015-0924-6

Google Scholar

[12] Le Houx, N., Pourroy, G., Camerel, F., Comet, M., Spitzer, D.: WO3 Nanoparticles in the 5−30 nm Range by Solvothermal Synthesis under Microwave or Resistive Heating. The Journal of Physical Chemistry C, 114(1), 155-161 (2009).

DOI: 10.1021/jp908669u

Google Scholar

[13] Sadakane, M., Sasaki, K., Kunioku, H., Ohtani, B., Abe, R., Ueda, W.: Preparation of 3-D ordered macroporous tungsten oxides and nano-crystalline particulate tungsten oxides using a colloidal crystal template method, and their structural characterization and application as photocatalysts under visible light irradiation. JOURNAL OF MATERIALS CHEMISTRY, 20(9), 1811-1818 (2010).

DOI: 10.1039/b922416e

Google Scholar

[14] Christou, K., Louloudakis, D., Vernardou, D., Savvakis, C., Katsarakis, N., Koudoumas, E., Kiriakidis, G.: Effect of solution chemistry on the characteristics of hydrothermally grown WO3 for electroactive applications. THIN SOLID FILMS, 594(B), 333-337 (2015).

DOI: 10.1016/j.tsf.2015.03.045

Google Scholar

[15] Cao, S., Chen, H.: Nanorods assembled hierarchical urchin-like WO3 nanostructures: Hydrothermal synthesis, characterization, and their gas sensing properties. J ALLOY COMPD, 702, 644-648 (2017).

DOI: 10.1016/j.jallcom.2017.01.232

Google Scholar

[16] Yao, Y., Yin, M., Yan, J., Liu, S.F.: P-type sub-tungsten-oxide based urchin-like nanostructure for superior room temperature alcohol sensor. APPL SURF SCI, 441, 277-284 (2018).

DOI: 10.1016/j.apsusc.2018.02.004

Google Scholar

[17] Li, Q., Wang, L., Chu, D., Yang, X., Zhang, Z.: Cylindrical stacks and flower-like tungsten oxide microstructures: Controllable synthesis and photocatalytic properties. CERAM INT, 40(3), 4969-4973 (2014).

DOI: 10.1016/j.ceramint.2013.09.115

Google Scholar

[18] Su, J., Feng, X., Sloppy, J.D., Guo, L., Grimes, C.A.: Vertically Aligned WO3 Nanowire Arrays Grown Directly on Transparent Conducting Oxide Coated Glass: Synthesis and Photoelectrochemical Properties. NANO LETT, 11(1), 203-208 (2011).

DOI: 10.1021/nl1034573

Google Scholar

[19] Amano, F., Tian, M., Wu, G., Ohtani, B., Chen, A.: Facile Preparation of Platelike Tungsten Oxide Thin Film Electrodes with High Photoelectrode Activity. ACS APPL MATER INTER, 3(10), 4047-4052 (2011).

DOI: 10.1021/am200897n

Google Scholar

[20] Zhou, Y., Huang, A., Ji, S., Zhou, H., Jin, P., Li, R.: Scalable Preparation of Photochromic Composite Foils with Excellent Reversibility for Light Printing. CHEM-ASIAN J, 13(4), 457-462 (2018).

DOI: 10.1002/asia.201701747

Google Scholar

[21] Wei, Y., Hu, M., Yan, W., Wang, D., Yuan, L., Qin, Y.: Hydrothermal synthesis porous silicon/tungsten oxide nanorods composites and their gas-sensing properties to NO2 at room temperature. APPL SURF SCI, 353, 79-86 (2015).

DOI: 10.1016/j.apsusc.2015.06.064

Google Scholar

[22] Li, J., Zhu, J., Liu, X.: Synthesis, characterization and enhanced gas sensing performance of WO3 nanotube bundles. NEW J CHEM, 37(12), 4241-4249 (2013).

DOI: 10.1039/c3nj00934c

Google Scholar

[23] Zheng, J.Y., Song, G., Kim, C.W., Kang, Y.S.: Fabrication of (001)-oriented monoclinic WO3 films on FTO substrates. NANOSCALE, 5(12), 5279-5282 (2013).

DOI: 10.1039/c3nr00964e

Google Scholar

[24] Huang, K., Pan, Q., Yang, F., Ni, S., Wei, X., He, D.: Controllable synthesis of hexagonal WO3 nanostructures and their application in lithium batteries. J PHYS D APPL PHYS, 41(15541715) (2008).

DOI: 10.1088/0022-3727/41/15/155417

Google Scholar

[25] Zeng, W., Miao, B., Li, T., Zhang, H., Hussain, S., Li, Y., Yu, W.: Hydrothermal synthesis, characterization of h-WO3 nanowires and gas sensing of thin film sensor based on this powder. THIN SOLID FILMS, 584, 294-299 (2015).

DOI: 10.1016/j.tsf.2014.12.037

Google Scholar

[26] Rout, C.S., Hegde, M., Rao, C.N.R.: H2S sensors based on tungsten oxide nanostructures. Sensors and Actuators B: Chemical, 128(2), 488-493 (2008).

DOI: 10.1016/j.snb.2007.07.013

Google Scholar

[27] Chen, D.L., Gao, L.: A new and facile route to ultrafine nanowires, superthin flakes and uniform nanodisks of nickel hydroxide. CHEM PHYS LETT, 405(1-3), 159-164 (2005).

DOI: 10.1016/j.cplett.2005.01.121

Google Scholar

[28] Guo, C., Yin, S., Yan, M., Kobayashi, M., Kakihana, M., Sato, T.: Morphology-Controlled Synthesis of W18O49 Nanostructures and Their Near-Infrared Absorption Properties. INORG CHEM, 51(8), 4763-4771 (2012).

DOI: 10.1021/ic300049j

Google Scholar

[29] Chang, M., Chou, L., Chueh, Y., Lee, Y., Hsieh, C., Chen, C., Lan, Y., Chen, L.: Nitrogen-doped tungsten oxide nanowires: Low-temperature synthesis on Si, and electrical, optical, and field-emission properties. SMALL, 3(4), 658-664 (2007).

DOI: 10.1002/smll.200600562

Google Scholar

[30] Vemuri, R.S., Bharathi, K.K., Gullapalli, S.K., Ramana, C.V.: Effect of Structure and Size on the Electrical Properties of Nanocrystalline WO3 Films. ACS APPL MATER INTER, 2(9), 2623-2628 (2010).

DOI: 10.1021/am1004514

Google Scholar

[31] Ou, J.Z., Yaacob, M.H., Breedon, M., Zheng, H.D., Campbell, J.L., Latham, K., du Plessis, J., Wlodarski, W., Kalantar-zadeh, K.: In situ Raman spectroscopy of H2 interaction with WO3 films. PHYS CHEM CHEM PHYS, 13(16), 7330-7339 (2011).

DOI: 10.1039/c0cp02050h

Google Scholar

[32] Hai, G., Huang, J., Cao, L., Jie, Y., Li, J., Wang, X., Zhang, G.: Influence of oxygen deficiency on the synthesis of tungsten oxide and the photocatalytic activity for the removal of organic dye. J ALLOY COMPD, 690, 239-248 (2017).

DOI: 10.1016/j.jallcom.2016.08.099

Google Scholar

[33] Wang, X., Ndegwa, P.M., Joo, H., Neerackal, G.M., Harrison, J.H., Stoeckle, C.O., Liu, H.: Reliable low-cost devices for monitoring ammonia concentrations and emissions in naturally ventilated dairy barns. ENVIRON POLLUT, 208(B), 571-579 (2016).

DOI: 10.1016/j.envpol.2015.10.031

Google Scholar