Development of Composite Materials Based on Ultrahigh-Molecular Weight Polyethylene and Thermally Expanded Graphite

Article Preview

Abstract:

In connection with the huge range of ultra-high molecular weight polyethylene (UHMWPE) grades, the choice of a particular brand is a difficult task. Rational choice of the polymer matrix is a necessary condition for the increase in reliability and service life of products, and consequently, for the efficiency of using these composite materials. The given article presents the results of tests on stress-strain properties of GUR-2122, 4113, 4120, 4130, 4150, 4170 and GHR-8020 ultra-high molecular weight polyethylene grades. GUR-4150 UHMWPE is chosen as the polymer matrix on the base of the test results. It is shown that the friction coefficient of the polymer composite material is reduced even with the modification of UHMWPE with nanodispersed thermally expanded graphite (TEG) in amount of 0.001-0.5 mass%. It is established that the rate of mass wear decreases by 3-4.3 while maintaining the stress-strain properties of the composites at the level of the initial UHMWPE. Polymer composite materials with an improved set of performance indicators are developed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

374-378

Citation:

Online since:

February 2019

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Buznik V.M., Kablov E.N., Sostojanie i perspektivy arkticheskogo materialovedenija, Vestnik Rossijskoj akademii nauk, 87 (9) (2017) 827-839.

Google Scholar

[2] Kablov E.N., Tendencii i orientiry innovacionnogo razvitija Rossii, Izd-vo VIAM, Moskva, (2015).

Google Scholar

[3] Raskutin A.E., Strategija razvitija polimernyh kompozicionnyh materialov, Aviacionnye materialy i tehnologii. S (2017) 344-348.

Google Scholar

[4] Ammosova O.A., Argunova A.G., Gogoleva O.V. i dr. Modificirovannye polimernye i kompozicionnye materialy dlja severnyh uslovij, Izd-vo SO RAN, Novosibirsk, (2017).

Google Scholar

[5] Barvinskij I.A., Barvinskaja I.E., Spravochnik po lit'evym termoplastichnym materialam. Svojstva, primery primenenija, pererabotka, torgovye marki, izgotoviteli, Versija 1.3, Inzhenernaja firma «AB Universal», (2004).

Google Scholar

[6] Seljutin E.G., Gavrilov Ju.Ju., Voskresenskaja E.N. i dr., Kompozicionnye materialy na osnove sverhvysokomolekuljarnogo polijetilena: svojstva, perspektivy ispol'zovanija, Himija v interesah ustojchivogo razvitija. 18 (2010) 375-388.

Google Scholar

[7] Panin S.V., Panin V.E., Kornienko L.A., Puvadin T. i dr., Modificirovanie sverhvysokomolekuljarnogo polijetilena (SVMPJe) nanonapolniteljami dlja poluchenija antifrikcionnyh kompozitov, Izvestija VUZov. Himija i himicheskaja tehnologija. 54 (7) (2011) 102-106.

Google Scholar

[8] Ohlopkova A.A., Petrova P.N., Gogoleva O.V., Iznosostojkie kompozicionnye materialy na osnove sverhvysokomolekuljarnogo polijetilena dlja jekspluatacii v jekstremal'nyh uslovijah, Materialovedenie. 9, (2011) 10-13.

Google Scholar

[9] Panin S.V, Wannasri S., Pouvadin T. i dr., Increasing tribotechnical properties of UHMW-PE based composite materials with nanomodificators by mechanical and chemical modification and surface irradiation, in Abstracts III International Conference Fundamental Bases of Mechanochemical Technologies,, Novosibirsk, (2009).

Google Scholar

[10] Polubojarov V.A., Seljutin G.E., Korotaeva Z.A., Gavrilov Ju.Ju., Vozmozhnosti metoda mehanohimicheskih vozdejstvij dlja prigotovlenija nanodispersij i modificirovanija imi polimerov, metallov, a takzhe dlja sozdanija keramicheskih materialov, Perspektivnye materialy. 6 (2008) 86-90.

Google Scholar

[11] Panin S.V., Kornienko L.A., Vannasri S. i dr., Vlijanie mehanicheskoj aktivacii, ionnoj implantacii i tipa napolnitelej na formirovanie plenki perenosa pri tribosoprjazhenii kompozitov na osnove SVMPJe, Mehanika kompozitnyh materialov. 47(5) (2011) 727-738.

Google Scholar

[12] Costa L., P.Bracco P., E.Brach del Prever, M.P. Luda, L.Trossarelli, Analyses of products diffused into UHMWPE prosthetic components in vivo, Biomaterials. 22 (14) ( 2001) 307-315.

DOI: 10.1016/s0142-9612(00)00182-4

Google Scholar

[13] Panin S.V., Kornienko L.A, Ivanova L.R. i dr., Design of Polymeric UHMWPE-based composite with increased Tribotechnical properties by Mechanical activation, ion implantation, Chemical modification and Nanofiller enforcement, in 3rd International Conference on heterogeneous material mechanics, China, 2011, 612-615.

Google Scholar

[14] Panin S.V., Kornienko L.A., Pirijaon S.i dr., Razrabotka antifrikcionnyh nanokompozitov na osnove himicheski modificirovannogo sverhvysokomolekuljarnogo polijetilena (SVMPJe), Chast' II, Vlijanie nanonapolnitelej na mehanicheskie i tribotehnicheskie svojstva himicheski modificirovannogo SVMPJe, Trenie i iznos. 32 (4) (2011) 233-239.

Google Scholar

[15] O.V. Gogoleva, A. A. Okhlopkova, P. N. Petrova, Development of Self-Lubricating Antifriction Materials Based on Polytetrafluoroethylene and Modified Zeolites, Journal of Friction and Wear. 35 (5) (2014) 383–388.

DOI: 10.3103/s1068366614050055

Google Scholar

[16] Gogoleva O.V., Popov S.N., Petrova P.N., Okhlopkova A.A., Investigation of structure and properties of composite materials that are based on ultrahigh molecular weight polyethylene and thermally expanded graphite, Russian engineering research. 34 (12) (2014) 743-746.

DOI: 10.3103/s1068798x14120120

Google Scholar

[17] Ohlopkova A.A., Gogoleva O.V., Nikiforov L.A., Borisova R.V., Modifikacija sverhvysokomolekuljarnogo polijetilena sloistymi glinami, Materialovedenie. 1 (2014) 45-49.

Google Scholar

[18] Argunova (Parnikova) A.G., Razrabotka i issledovanie funkcional'nyh kompozitov na osnove politetraftorjetilena i nanostrukturnyh oksidov aljuminija i magnija, Avtoref. diss.na soisk. uch. step. k.t.n., Komsomol'sk-na-Amure, (2012).

Google Scholar

[19] Petukhova E.S., Savvinova M.E., Krasnikova I.V., Mishakov I.V., Okhlopkova A. A., Dae-Yong Jeong, and Jin-Ho Cho, Reinforcement of Polyethylene Pipes with Modified Carbon Microfibers, Journal of the Korean Chemical Society. 60 (3) (2016) 177-180.

DOI: 10.5012/jkcs.2016.60.3.177

Google Scholar

[20] Chukov D.I., Formirovanie struktury i svojstva kompozicionnyh materialov na osnove sverhvysokomolekuljarnogo polijetilena, armirovannyh uglerodnymi voloknami, Avtoref. diss. na soisk. uch. step. k.t.n., Moskva, (2013).

Google Scholar

[21] Gogoleva O.V., Petrova P.N., Popov S.N., Okhlopkova A.A., Wear-resistant composite materials based on ultrahigh molecular weight polyethylene and basalt fibers, Journal of Friction and Wear. 36 (4) (2015) 301-305.

DOI: 10.3103/s1068366615040054

Google Scholar

[22] Senatov F.S., Mikrostruktura i svojstva kompozitov medicinskogo naznachenija na osnove sverhvysokomolekuljarnogo polijetilena, Avtoref. Diss. na soisk. Uch. st. k.f.-m.n., Moskva, (2013).

Google Scholar