Investigation of NiO-Al2O3-SiO2 Properties via XRD, FTIR Techniques and Thermal Analysis

Article Preview

Abstract:

Nowadays, nanostructures made on the basis of mixed oxides are of great interest for fundamental scientific and applied researches because of its potential applications, such as photo catalysts, luminophores, sensitive elements of gas sensors and vacuum sensors. The article describes nanostructural properties of NiO–Al2O3–SiO2 prepared by sol-gel method. Nanocomposites were obtained by mixing a solution of Si (OC2H5)4 (TEOS) as a SiO2 precursor with a solution containing Al (NO3)3 · 9H2O and Ni (NO3)2 · 6H2O. Ethanol was used as solvent. The gel was dried at room temperature and annealed in the 100–500 °C range. The behavior of chemical bonds is considered by using FTIR technique. Crystallization of NiO phase at 500 °C is observed in XRD patterns. Aluminum atoms are incorporated into silica matrix, which was confirmed by XRD. The amorphous structures which are desirable for next generations are formed at room temperature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

134-138

Citation:

Online since:

February 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V.V. Kozik, A.S. Brichkov, V.Yu. Brichkova, V.K. Ivanov, О.P. Tolbanov, V.D. Ogorodnikov, Yu.D. Tretyakov, Obtaining and properties of nanostructured composite films based on double oxides of silicon and d-metals (Mn, Fe, Co, Ni), Doklady Akademii Nauk. 445, 5(2012) 535-538.

DOI: 10.1134/s0012500812080046

Google Scholar

[2] O.A. Shilova, V. Khashkovsky, Sol-gel method for obtaining composite vitreous and glass-ceramic films based on inorganic polymers, Materials. Technologies. Instruments. 6, 2 (2001) 64-70.

Google Scholar

[3] I.E. Gracheva, A.I. Maksimov, V.A. Moshnikov, O.F. Lutskaya, Phase and structural transformations in nanocomposites based on SnO2-SiO2-In2O3, Izvestiya SPbGETU LETI. 2 (2006) 40-44.

Google Scholar

[4] N.V. Popovich, L.A. Orlova, Yu.E. Ananyeva, A.S. Chaynikova, Low-temperature synthesis of coatings in the system Y2O3-Al2O3-SiO2, Journal of Volgstu. 2, 75 (2011) 160-164.

Google Scholar

[5] L. Armelao, S. C.J. Gross, Sol-Gel Synthesis of Nickel and Cobalt Oxide Nanoclusteres in Silica Layers, Proc. Int. Congr. Glass. 2 (2001) 4-5.

Google Scholar

[6] N.A. Shabanova, P.D. Sarkisov, Sol-gel technology. Nanodisperse silica, BINOM, Moscow, (2012).

Google Scholar

[7] G. Katumba, B.W. Mwakikunga, T.R. Mothibinyane, FTIR and Raman spectroscopy of carbon nanoparticles in SiO2, ZnO and NiO Matrices, Nanoscale Res. Lett. 3 (2008) 421-427.

DOI: 10.1007/s11671-008-9172-y

Google Scholar

[8] A. Martucci, N. Bassiri and M. Guglielmi, NiO-SiO2 Sol-gel Nanocomposite films for optical gas sensor, Journal of Sol-Gel Science and Technology. 26 (2003) 993-996.

DOI: 10.1023/a:1020717614995

Google Scholar

[9] S.Ye. Igoshina, AA Karmanov, A. P. Sigaev, Features of IR transmission spectra of film-forming sols based on tetraethoxysilane containing modifying compounds, Young Scientist. 9 (2014) 158-161.

Google Scholar

[10] V.P. Tolstoy, I.V. Chernyshova, V.A. Skryshevsky, Handbook of infrared spectroscopy of ultrathin films, John Wiley & Sons Inc., New Jersey, (2003).

DOI: 10.1002/047123432x

Google Scholar

[11] K. Nakamoto, IR-spectra and Raman spectra of inorganic and coordination compounds, Mir, Moscow, (1991).

Google Scholar

[12] A. Bahari, K. Taghavi, N. Ghorbanzadeh, S. Asadolahzadeh, Investigation of NiO/SiO2 nanostructural properties via XRD, X-powder and FTIR techniques, Proceedings of the 4th International Conference on nanostructures. (2012) 319-320.

Google Scholar

[13] A.C. Lenshin, B.M. Kashkarov, B.H. Tsipenyuk, P.V. Seredin, B.L. Agapov, D.A. Minakov, E.P. Domashevskaya, Optical properties of porous silicon treated in tetraethylorthosilicate, Journal of Technical Physics. 83, 2 (2013) 136-140.

DOI: 10.1134/s1063784213020151

Google Scholar

[14] V.A. Moshnikov, I.E. Gracheva, M.G. Anchkov, Investigation of nanomaterials with a hierarchical structure obtained by sol-gel method, Physics and Chemistry of Glass. 37, 5 (2011) 672-684.

DOI: 10.1134/s1087659611050063

Google Scholar

[15] N.I. Radishevskaya, A.Yu. Chapskaya, O.V. Lviv, V.I. Vereshchagin, A.V. Korshunov, Composition and structure of the protective oxide-hydroxide shell on aluminum nanopowder particles, Proceedings of Tomsk Polytechnic University. 318, 3 (2011) 19-23.

Google Scholar

[16] C.J. Brinker, A.J., P.R. Hurd Schunk, Review of Sol-Gel Thin Films Formation, J. Non-Cryst. Sol. 147, 148 (1992) 424-436.

DOI: 10.1016/s0022-3093(05)80653-2

Google Scholar

[17] V.S. Levitsky, A.I. Maksimov, V.A. Moshnikov, E.I. Terukov, Investigation of the structure and composition of film sol-gel systems CoOx-SiO2, Physics of the solid body. 56, 2 (2014) 270-275.

DOI: 10.1134/s1063783414020176

Google Scholar

[18] A.D. Pomogiylo, Hybrid polymer inorganic nanocomposites, Uspekhi Khimii. 69, 1 (2000). 60-83.

Google Scholar

[19] U. Schubert, Silica-Based and Transition Metal-Based Inorganic-Organic Hybrid Materials A Comparison, J. Sol-Gel Sci. Tech. 26, 1 (2003) 4755.

Google Scholar

[20] V.M. Bogatyrev, L.I. Borisenko, E.I. Oranskaya, V.M. Gunko, R. Lebed, J. Skubiszewska-Ziemba, Effect of synthesis conditions on the structural characteristics of NiO/SiO2 oxide nanocomposites, Nanomaterials and nanotechnologies. 2, 17 (2010) 178-179.

Google Scholar

[21] J. Hernández-Torres, A. Mendoza-Galván, Formation of NiO–SiO2 nanocomposite thin films by the sol–gel method, J. Non-Cryst. Solids. 351 (2005) 2029-2035.

DOI: 10.1016/j.jnoncrysol.2005.05.011

Google Scholar

[22] G. Encheva, B. Samuneva, P. Djambaski, E. Kashchieva, D. Paneva, I. Mitov, Silica gels containing transition metal oxides, J. Non-Cryst. Solids. 345-346 (2004) 615-619.

DOI: 10.1016/j.jnoncrysol.2004.08.108

Google Scholar

[23] G. Goncalves, M.K. Lenzi, O.A.A. Santos, L.M.M. Jorge, Preparation and characterization of nickel based catalysts on silica, alumina and titania obtained by sol-gel method, J. Non-Cryst. Solids. 352 (2006) 3697-3704.

DOI: 10.1016/j.jnoncrysol.2006.02.120

Google Scholar