Influence of Surface Energy on Ni-Fe Thin Films Formation Process

Article Preview

Abstract:

The Ni-Fe thin films were produced via electrodeposition in four different modes - direct current, and three types of pulse-modes with different pulse duration onto Au sublayer. The correlation between technological parameters of the electrodeposition and microstructure was demonstrated. Analysis of microstructure evolution revealed an un-expected changing of the film growth mechanism from “island” to “layer-by-layer” with the decreasing of the grain size less than 10 nm. Explanation was found in binding energies competition, that has been defined using the unique AFM method, based on recording the angle of the cantilever twist, when scanning in contact with the surface.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

228-234

Citation:

Online since:

February 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H Al-Saleh Mohammed, Electrical and electromagnetic interference shielding characteristics of GNP/UHMWPE composites, J. of Phys. D: Appl. Phys. 49 (2016)19-29.

DOI: 10.1088/0022-3727/49/19/195302

Google Scholar

[2] L Zhang, D. R Li, Z. C. Lu, Novel Fe-based amorphous magnetic powder cores with ultra-low core losses, Sci China Tech Sci 53(2010) 1290–1293.

DOI: 10.1007/s11431-010-0055-y

Google Scholar

[3] D.I. Tishkevich, S.S. Grabchikov, S.B. Lastovskii, S.V. Trukhanov, T.I. Zubar, D.S. Vasin, A.V. Trukhanov, Correlation of The Synthesis Conditions and Microstructure for Bi-Based Electron Shields Production, J. of All. and Comp. 749 (2018) 1036-1042.

DOI: 10.1016/j.jallcom.2018.03.288

Google Scholar

[4] V.V. Kondalkar, X. Li, S. Yang and K. Leea, Current Sensor based on Nanocrystalline NiFe/Cu/NiFe Thin Film, Procedia Engineering 168 (2016) 675 – 679.

DOI: 10.1016/j.proeng.2016.11.245

Google Scholar

[5] W. Y. Lee, M. F. Toney, D. Mauri, P. Tameerug and E. Allen, Ni-Fe alloy thin films for AMR sensors, IEEE Trans. Magn., 36 (2000) 381–387.

Google Scholar

[6] P. Chowdhury, Development of magnetoresistive thin film sensor for magnetic field sensing applications, Solid State Physics: Proceedings of the 57th DAE Solid State Physics Symposium AIP Conf. Proc. 1512 (2013) 30-33.

DOI: 10.1063/1.4790897

Google Scholar

[7] K. Hika, L.V. Panina, K. Mohri, Magneto-impedance in sandwich film for magnetic sensor heads, IEEE Transactions on Magnetics, 32 (1996) 4594-4596.

DOI: 10.1109/20.539090

Google Scholar

[8] S.S. Grabchikov, A.V. Trukhanov, S.V. Trukhanov, I.S. Kazakevich, A.A. Solobay, V.T. Erofeenko, N.A. Vasilenkov, O.S. Volkova, A. Shakin, Effectiveness of the magnetostatic shielding by the cylindrical shells, Journ. of Magn. And Magn. Matterials, 398 (2016) 49-53.

DOI: 10.1016/j.jmmm.2015.08.122

Google Scholar

[9] A.V. Trukhanov, S.S. Grabchikov, A.A. Solobai, D.I. Tishkevich, S.V. Trukhanov, E.L. Trukhanova, AC and DC-shielding properties for the Ni80Fe20/Cu film structures, Journ. of Magn. And Magn. Matterials 443 (2017) 142-148.

DOI: 10.1016/j.jmmm.2017.07.053

Google Scholar

[10] D. Kumar, S. Barman, A. Barman, Magnetic Vortex Based Transistor Operations, Sci. Rep. 4 (2014) 04108.

DOI: 10.1038/srep04108

Google Scholar

[11] A. Fert, V. Cros, and J. Sampaio, Skyrmions on the track, Nat. Nanotechnol 8 (2013) 152.

Google Scholar

[12] R. Tomasello, E. Martinez, R. Zivieri, L. Torres, M. Carpentieri, and G. Finocchio, A strategy for the design of skyrmion racetrack memories, Sci. Rep. 4 (2014) 6784.

DOI: 10.1038/srep06784

Google Scholar

[13] T. Kuznetsova, T. Zubar, S. Chizhik, A. Gilewicz, O. Lupicka, B. Warcholinski, Surface Microstructure of Mo(C)N Coatings Investigated by AFM, J. Mater. Eng. Perform. 12 (2016) 5450-5459.

DOI: 10.1007/s11665-016-2390-z

Google Scholar

[14] B. Warcholinski, A. Gilewicz, O. Lupicka, A.S. Kuprin, G.N. Tolmachova, V.D. Ovcharenko, I.V. Kolodiy, M. Sawczak, A.E. Kochmanska, P. Kochmanski, T.A. Kuznetsova, T.I. Zubar, A.L. Khudoley, S.A. Chizhik, Structure of CrON coatings formed in vacuum arc plasma fluxes, Surf. Coat. Technol 309 (2017) 920 – 930.

DOI: 10.1016/j.surfcoat.2016.10.061

Google Scholar

[15] T. I. Zubar, L. V. Panina, N. N. Kovaleva, S. A. Sharko, D. I. Tishkevich, D. A. Vinnik, S. A. Gudkova, E. L. Trukhanova, E. A. Trofimov, S. A. Chizhik, S. V. Trukhanov and A. V. Trukhanov, Anomalies in Growth of Electrodeposited Ni–Fe Nanogranular Films, CrystEngComm 20 (2018) 2306–2315.

DOI: 10.1039/c8ce00310f

Google Scholar

[16] L. Guo, G. Oskam, A. Radisic, P. M Hoffmann, Searson Island growth in electrodeposition, J. Phys. D: Appl. Phys. 44 (2011) 443001.

DOI: 10.1088/0022-3727/44/44/443001

Google Scholar

[17] T.I. Zubar, S.A. Sharko, D.I. Tishkevich, N.N. Kovaleva, D.A. Vinnik, S.A. Gudkova, E.L. Trukhanova, E.A. Trofimov, S.A. Chizhik, L.V. Panina, S.V. Trukhanov, A.V. Trukhanov, Anomalies in Ni-Fe Nanogranular Films Growth, J. of All. and Comp. 748 (2018) 970-978.

DOI: 10.1016/j.jallcom.2018.03.245

Google Scholar

[18] A. V Trukhanov, S. S. Grabchikov, S. A. Sharko, S. V. Trukhanov, K. L. Trukhanova, O. S. Volkova, A. Shakin, Magnetotransport properties and calculation of the stability of GMR coefficients in CoNi/Cu multilayer quasi-one-dimensional structures, Mater. Res. Express 3 (2016) 065010.

DOI: 10.1088/2053-1591/3/6/065010

Google Scholar

[19] B. Warcholinski, A. Gilewicz, T.A. Kuznetsova, T.I. Zubar, S.A. Chizhik, S.O. Abetkovskaia, V.A. Lapitskaya mechanical properties of Mo(C)N coatings deposited using cathodic arc evaporation, Surf. Coat. Technol. 319 (2017) 117-128.

DOI: 10.1016/j.surfcoat.2017.04.005

Google Scholar

[20] B. Warcholinski , T.A. Kuznetsova , A. Gilewicz , T.I. Zubar , V.A. Lapitskaya , S. A. Chizhik, A.I. Komarov, V.I. Komarova , A.S. Kuprin, V.D. Ovcharenko, V.S. Goltvyanytsya, Structural and mechanical properties of Zr-Si-N coatings deposited by arc evaporation at different substrate bias voltages, J. Mater. Eng. Perform. 27 (2018) 3940–3950.

DOI: 10.1007/s11665-018-3483-7

Google Scholar