Template Assisted Ni Nanowires Fabrication

Article Preview

Abstract:

Through-pores alumina membranes of 50 μm thickness and 70 × 70 mm size have been fabricated to deposit Ni nanowires by electrochemical processing. Due to highly ordered microstructure of the membranes, the pores were filled by nanowires almost to 100%. The membrane nanowires composite morphology; structure and chemical features have been studied by scanning electron microscopy, atomic-force microscopy and X-ray structural analysis. To measure the specific magnetization σ as a function of temperature in the range of 77–1400 K, the pondero-motive method was used.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

235-241

Citation:

Online since:

February 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.V. Puydinger dos Santos, M. Velo, R.D. Domingos, J. Bettini, J.A. Diniz, F. Béron, K.R. Pirota, Electrodeposited Nickel Nanowires For Magnetic-Field Effect Transistor (MagFET), J. Integr. Circ. Syst. 11 (2016) 13–18.

DOI: 10.29292/jics.v11i1.425

Google Scholar

[2] X. Kou, X. Fan, R.K. Dumas, Q. Lu, Y. Zhang, H. Zhu, X. Zhang, K. Liu, J.Q. Xiao, Memory Effects In Magnetic Nanowire Arrays. Adv. Mater 23 (2011) 1393–1397.

DOI: 10.1002/adma.201003749

Google Scholar

[3] Y. Li, F. Qian, J. Xiang, C.M. Liebe, Nanowire Electronic And Optoelectronic Devices, Mater. Today 9 (2006) 18–27.

Google Scholar

[4] S. Krimpalis, O.G. Dragos, M. Grigoras, N. Lupu, H. Chiriac, Magnetoresistance and Spin Transfer Torque In Electrodeposited NiFe/Cu Multilayered Nanowires, J. Adv. Res. in Phys 1(2) (2010) 021005.

DOI: 10.1557/jmr.2011.62

Google Scholar

[5] A.V. Trukhanov, S.S. Grabchikov, A.A. Solobai, D.I. Tishkevich, S.V. Trukhanov, E.L. Trukhanova, AC and DC-shielding Properties for the Ni80Fe20/Cu Film Structures, J. of Magn. and Mag. Mat. 443 (2017) 142-148.

DOI: 10.1016/j.jmmm.2017.07.053

Google Scholar

[6] K.T. Tsai, Y.R. Huang, M.Y. Lai, C.Y. Liu, H.H. Wang, J.H. He, Y.L. Wang, Identical Length Nanowire Arrays in Anodic Alumina Templates, J. Nanosci. Nanotechnol 10 (12) (2010) 8293–8297.

DOI: 10.1166/jnn.2010.2742

Google Scholar

[7] H. Masuda, K. Fukuda, Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina, Science 268 (1995) 1466–1468.

DOI: 10.1126/science.268.5216.1466

Google Scholar

[8] D.L. Shimanovich, A.I. Vorobjova, D.I. Tishkevich, A.V. Trukhanov, M.V. Zdorovets, A.L. Kozlovskiy Preparation and Morphology-Dependent Wettability of Porous Alumina Membranes, Beilst. J.of Nanotech., 9 (2018) 1423-1436.

DOI: 10.3762/bjnano.9.135

Google Scholar

[9] A.I. Vorobjova, D.L. Shimanovich, K.I. Yanushkevich, S.L. Prischepa, E.A. Outkina, Properties of Ni and Ni–Fe Nanowires Electrochemically Deposited Into a Porous Alumina Template, Beilstein J. Nanotech. 7 (2016) 1709–1717.

DOI: 10.3762/bjnano.7.163

Google Scholar

[10] T. Yanagishita, H. Masuda, High-throughput Fabrication Process for Highly Ordered Through-Hole Porous Alumina Membranes Using Two-Layer Anodization, Electrochim. Acta 184 (2015) 80–85.

DOI: 10.1016/j.electacta.2015.10.019

Google Scholar

[11] J. Abdul Mutalib Md, Losic D., Voelcker N. H. Nanoporous Anodic Aluminium Oxide: Advances in Surface Engineering and Emerging Applications, Prog. in Mat. Sci. 58 (2013) 636-704.

DOI: 10.1016/j.pmatsci.2013.01.002

Google Scholar

[12] S.V. Trukhanov, A.V. Trukhanov, L.V. Panina, V.G. Kostishyn, V.A. Turchenko, E.L. Trukhanova, An.V. Trukhanov, T.I. Zubar, V.M. Ivanov, D.I. Tishkevich, D.A. Vinnik, S.A. Gudkova, D.S. Klygach, P. Thakur, A. Thakur, Y. Yang, Temperature Evaluation of the Structure Parameters and Exchange Interactions in BaFe12-xInxO19, J. of Magn. and Mag. Mat. 466 (2018) 393-405.

DOI: 10.1016/j.jmmm.2018.07.041

Google Scholar

[13] D.I. Tishkevich, S.S. Grabchikov, S.B. Lastovskii, S.V. Trukhanov, T.I. Zubar, D.S. Vasin, A.V. Trukhanov, Correlation of the Synthesis Conditions and Microstructure for Bi-Based Electron Shields Production, J. of All. and Comp. 749 (2018) 1036-1042.

DOI: 10.1016/j.jallcom.2018.03.288

Google Scholar

[14] D.I. Tishkevich, S.S. Grabchikov, L.S. Tsybulskaya, V.S. Shendyukov, S.S. Perevoznikov, S.V. Trukhanov, E.L. Trukhanova, A.V. Trukhanov, D.A. Vinnik, Electrochemical Deposition Regimes and Critical Influence of Organic Additives on the Structure of Bi Films, J. of All. and Comp. 735 (2018) 1943-1948.

DOI: 10.1016/j.jallcom.2017.11.329

Google Scholar

[15] S.V. Trukhanov, A.V. Trukhanov, V.A. Turchenko, An. V. Trukhanov, D.I. Tishkevich, E.L. Trukhanova, T.I. Zubar, D.V. Karpinsky, V.G. Kostishyn, L.V. Panina, D.A. Vinnik, S.A. Gudkova, E.A. Trofimov, P. Thakur, A. Thakur, Y. Yang, Magnetic and Dipole Moments in Indium Doped Barium Hexaferrites, J. of Magn. and Mag. Mat. 457 (2018) 83-96.

DOI: 10.1016/j.jmmm.2018.02.078

Google Scholar

[16] A.V. Trukhanov, S.V. Trukhanov, V.G. Kostishyn, L.V. Panina, V.V. Korovushkin, V.A. Turchenko, D.A. Vinnik, E.S Yakovenko, V.V. Zagorodnii, V.L. Launetz, V.V. Oliynyk, T.I. Zubar, D.I. Tishkevich, E.L. Trukhanova, Correlation of the Atomic Structure, Magnetic Properties and Microwave Characteristics in Substituted Hexagonal Ferrites, J. of Magn. and Mag. Mat. 462 (2018) 127-135.

DOI: 10.1016/j.jmmm.2018.05.006

Google Scholar

[17] T.I. Zubar, S.A. Sharko, D.I. Tishkevich, N.N. Kovaleva, D.A. Vinnik, S.A. Gudkova, E.L. Trukhanova, E.A. Trofimov, S.A. Chizhik, L.V. Panina, S.V. Trukhanov, A.V. Trukhanov, Anomalies in Ni-Fe Nanogranular Films Growth, J. of All. and Comp. 748 (2018) 970-978.

DOI: 10.1016/j.jallcom.2018.03.245

Google Scholar