Iron Oxidation State Analysis in ESR Slag

Article Preview

Abstract:

It is shown that the value of the equilibrium oxygen partial pressure, Po2 as a value available for measurements is possible to be taken as a measure of slag redox potential of, taking into account its electronic system performance. Application of the electromotive force method (EMF) allowed establishing the character of a change in the average oxidation state of iron νFe depending on Po2, the temperature and slag composition. The study of Mössbauer absorption spectra of quenched slag samples confirmed the possibility of simultaneous presence of iron in the flux in oxidation states from 0 to +3.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

437-443

Citation:

Online since:

February 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.G. Ponomarenko, J.Phys. Chem., 48 (7) (1974)1668-1674; 48 (8) (1974) 1950-1958.

Google Scholar

[2] А.N. Morozov, Physical Chemistry and Electrochemistry of molten salts and slags Chemistry, Chemistry, Leningrad (1972).

Google Scholar

[3] S.А. Hrapko, Collection of research papers of DonNTU, Metallurgy, Donetsk, Ukraine, 1(14)-2(15) (2012) 3-13.

Google Scholar

[4] Е.N. Inozemtseva, Thermodynamic model of distribution of variable valence elements between metal and slag and optimization of direct alloying process on its basis, Donetsk Polytechnic Institute, USSR, (1987).

Google Scholar

[5] L.S. Darken, R.W. Gurry, J. Amer. Chem. Soc., 8 (4) (1946) 798-816.

Google Scholar

[6] G.G. Mikhailov, Yu.S. Kuznetsov, O.I. Kachurina, A.S. Chernukha, J. Heraut of South Ural State University, Metallurgy, 13 (1) (2013) 6-13.

Google Scholar

[7] L.Ya. Levkov, Theoretical prerequisites and practical methods of controlling physicochemical and thermophysical processes in electroslagremelting that determine the quality of critical products, JSC «RPA «CNIITMASH», Мoscow, Russia (2016).

Google Scholar

[8] T. Dubovik, A. Itsenko, L. Levkov, J. Powder Met. & Metal Ceram., 33 (1-2) (1994) 100-102.

Google Scholar

[9] L.Ya. Levkov, Proc. Int. Conf. on Mathematical Modeling and Simulation of Metal Technol. MMT, Ariel, Israel (2000) 590-603.

Google Scholar

[10] V.S. Dub, L.Ya. Levkov, D.A. Shurygin, Proc. of the Medovar Memorial Symposium, Kyiv, Ukraine (2016) 39-49.

Google Scholar

[11] I. Jonczy, J. Stanek, J. Nukleonika, 58 (1) (2013) 127-131.

Google Scholar

[12] D.A. Pankratov, J. Inorganic Mat., 50 (1) (2014) 182-189.

Google Scholar

[13] F.Menil, J. Phys. Chem. Solids., 46 (1985) 763-789.

Google Scholar

[14] D.A. Pankratov, Yu.M. Kiselev, J.Russ. J. of Inorganic Chem., 54 (9) (2009) 1451-1454.

Google Scholar

[15] S. Sunayama, M. Kavakami, K.S. Goto, J. Tetsu-to-hagane, 64 (4) (1978) 12-18.

Google Scholar

[16] M. Timucin, A. Morris, J. Met. Trans., 11 (1970) 3193-3201.

Google Scholar

[17] M. Kawakami, K.S. Goto, M.A. Matsuoka, J. Met. Trans., 11 B (1980) 463-469.

Google Scholar

[18] L. Yang, J.R. Belton, J. Meta. Mat. Trans., 29 B (1998) 837-845.

Google Scholar

[19] Shiro Ban-Ya, J. ISIJ Inter., 33 (1) (1993) 2-11.

Google Scholar

[20] S. Jahanshahi, S. Sun, L. Zhang., Proc. Tenth International Ferroalloys Congress, Cape Town, S.A. (2004) 316-332.

Google Scholar

[21] J. Mikelsons, J. Arhivfurdus, Eisenhuttenwesen, 53 (6) (1982) 251-265.

Google Scholar

[22] G.Yu. Yurkov, A.S. Fionov, A.V. Kozinkin, et al., Journal of Nanophotonics, 6 (1) (2012) 061717.1-061717.21.

Google Scholar

[23] G. Le Caer, J.M. Dubois, J.P. Senateur, Journal of Solid State Chem., 19 (1) (1976) 19-28.

Google Scholar

[24] T.N. Rostovshchikova, M.S. Korobov, D.A. Pankratov, et al., Journal Russ. Chem. Bull., 54 (6) (2005) 1425-1432.

Google Scholar