[1]
M. Hatase, M. Hanaya, T. Hikima, et al, Discovery of homogeneous-nucleation-based crystallization in simple glass-forming liquid of toluene below its glass-transition temperature. J. Non-Crystalline Solids. 307-310 (2002) 257-263.
DOI: 10.1016/s0022-3093(02)01473-4
Google Scholar
[2]
M.N. Shorshorov, A.P. Kuprin, A.A. Novakova, et al, Definition of critical conditions of cooling melt Fe83B17 at superfast quenching to amorphous condition, J. Physics of metals and physical metallurgy. 9 (1990) 131-135.
Google Scholar
[3]
B.V. Mihajlovskij, I.B. Kutsenok, V.A. Gejderih. An Estimate of Thermodynamic Functions of Crystallization of Amorphous Alloys of System Fe-Si-B. J.Phys. Chem. 71(3) (1997) 409-414.
Google Scholar
[4]
V.A. Shneidman, E.V. Goldstein, Nucleation time lag at nano-sizes. J. Non-Crystalline Solids. 351 (2005) 1512-1521.
DOI: 10.1016/j.jnoncrysol.2005.03.039
Google Scholar
[5]
M. Roskosz, M.J. Toplis, P. Riche, Kinetic vs. thermodynamic control of crystal nucleation and growth in molten silicates, J. Non-Crystalline Solids. 352 (2006) 180-184.
DOI: 10.1016/j.jnoncrysol.2005.11.009
Google Scholar
[6]
V.M. Fokin, E.D. Zanotto, Continuous compositional changes of crystal and liquid during crystallization of a sodium calcium silicate glass, J. Non-Crystalline Solids. 353 (2007) 2459-2468.
DOI: 10.1016/j.jnoncrysol.2007.04.014
Google Scholar
[7]
I.I. Danilova, V.V. Markin, O.V. Smolyakova, et al, Manufacture amorphous and nanocrystal tapes by using continues casting machine, Electrometallurgy. 6 (2008) 25-30.
Google Scholar
[8]
D. Wang, Y. Liu, Z. Gao, et al, A multi-peak transformation kinetics model and its application to the isothermal crystallization of Mg65Cu25Y10 amorphous alloy, J. Non-Crystalline Solids. 354 (2008) 3990-3999.
DOI: 10.1016/j.jnoncrysol.2008.05.023
Google Scholar
[9]
M.B. Tošic, V.D. Zivanovic, S.R. Grujic, et al, A study of the primary crystallization of a mixed anion silicate glass, J. Non-Crystalline Solids. 354 (2008) 3694-3704.
DOI: 10.1016/j.jnoncrysol.2008.04.011
Google Scholar
[10]
M.J. Schweiger, P.Hrma, C.J. Humrickhouse, et al, Cluster formation of silica particles in glass batches during melting, J. Non-Crystalline Solids. 356 (2010) 1359-1367.
DOI: 10.1016/j.jnoncrysol.2010.04.009
Google Scholar
[11]
Avrami M. Kinetics of Phase Change [J]. J. Chem. Phys. 1939, 7 (12): 1069.
Google Scholar
[12]
Avrami M. Kinetics of Phase Change [J], J. Chem. Phy., 1940, 8 (2):133.
Google Scholar
[13]
Avrami M. Kinetics of Phase Change [J], J. Chem. Phys. 1941, 9 (2): 123.
Google Scholar
[14]
А.N. Kolmogorov, To the statistical theory of the metals crystallization, Izv. Akad. Nauk SSSR. Ser. Math. 3 (1937) 355-358.
Google Scholar
[15]
J.W.P. Schmelzer, R. Muller, J. Moller,et al, Theory of nucleation in viscoelastic media: application to phase formation in glassforming melts, J. Non-Crystalline Solids. 315 (2003) 144-160.
DOI: 10.1016/s0022-3093(02)01428-x
Google Scholar
[16]
V.A. Shneidman, E.V. Goldstein, Nucleation time lag at nano-sizes, J. Non-Crystalline Solids. 351 (2005) 1512-1521.
DOI: 10.1016/j.jnoncrysol.2005.03.039
Google Scholar
[17]
D. Wang, Y. Liu, Y. Han, et al, Kinetic consideration for the incubation of the phase transformation and its application to the crystallization of amorphous alloy, Appl Phys A. 92 (2008) 703-707.
DOI: 10.1007/s00339-008-4627-7
Google Scholar
[18]
J.F. Xu, F. Liu, S.J. Song, et al, Application of recipes for isothermal and isochronal solid-state transformations, J. Non-Crystalline Solids. 356 (2010) 1236-1245.
DOI: 10.1016/j.jnoncrysol.2010.04.034
Google Scholar
[19]
A.D. Drozin, Theoretical analysis of the heterophase chemical reactions products growth in solution, Russian Metallurgy (Metally). 5 (1987) 73-77.
Google Scholar
[20]
A.D. Drozin, V.E. Roshchin., D.Ya Povolotskii, Mathematical model of the deoxidation products growth in liquid metal, Russian Metallurgy (Metally). 6 (1987) 28-33.
Google Scholar
[21]
PA. Gamov, A. D. Drozin, M. V. Dudorov, et. al, Model for Nanocrystal Growth in an Amorphous Alloy, Russian Metallurgy (Metally). 11 (2012) 1002-1005.
DOI: 10.1134/s0036029512110055
Google Scholar
[22]
G.S. Ershov, V.G. Chernjakov, Structure and property of liquid and firm metals, Metallurgy, Moscow, (1978).
Google Scholar
[23]
P.P. Arsentev, L.A. Koledov, Metal melts and their properties, Metallurgy, Moscow, (1976).
Google Scholar
[24]
V.E. Zinovev Thermal properties of metals at heats, Metallurgy, Moscow, (1989).
Google Scholar
[25]
V. Seith, Diffusion in Metallen, Springer, Berlin, (1955).
Google Scholar
[26]
V.V. Maslov, Kinetics and the mechanism of crystallization of amorphous alloy Fe85B15 in the presence of soluble impurities, Physics of metals and the newest technology, 19(2) (1997) 17-26.
Google Scholar
[27]
M.E. Drits, Properties of elements, Metallurgy, Moscow, (1989).
Google Scholar