Non-Equilibrium Crystallization of a Eutectic Alloy - Mathematical Model

Article Preview

Abstract:

The process of a eutectic alloy crystallization is considered when the eutectic alloy is instantly cooled from the liquid state to below the eutectic transformation temperature. The features of such crystallization are considered. The mathematical model of the process is constructed that takes into account the nucleation of new phases particles, their growth and the associated change the concentrations of the melt components. The nuclei of new phases are supposed be spherical. As they grow, they come into contact and become lamellar. The developed approach was applied to the amorphization process of the eutectic alloys. An amorphous state has been reached if the clusters of solid phases can’t grow above nanosize. The model allows researching the necessary amorphization conditions.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

417-422

Citation:

Online since:

February 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Hatase, M. Hanaya, T. Hikima, et al, Discovery of homogeneous-nucleation-based crystallization in simple glass-forming liquid of toluene below its glass-transition temperature. J. Non-Crystalline Solids. 307-310 (2002) 257-263.

DOI: 10.1016/s0022-3093(02)01473-4

Google Scholar

[2] M.N. Shorshorov, A.P. Kuprin, A.A. Novakova, et al, Definition of critical conditions of cooling melt Fe83B17 at superfast quenching to amorphous condition, J. Physics of metals and physical metallurgy. 9 (1990) 131-135.

Google Scholar

[3] B.V. Mihajlovskij, I.B. Kutsenok, V.A. Gejderih. An Estimate of Thermodynamic Functions of Crystallization of Amorphous Alloys of System Fe-Si-B. J.Phys. Chem. 71(3) (1997) 409-414.

Google Scholar

[4] V.A. Shneidman, E.V. Goldstein, Nucleation time lag at nano-sizes. J. Non-Crystalline Solids. 351 (2005) 1512-1521.

DOI: 10.1016/j.jnoncrysol.2005.03.039

Google Scholar

[5] M. Roskosz, M.J. Toplis, P. Riche, Kinetic vs. thermodynamic control of crystal nucleation and growth in molten silicates, J. Non-Crystalline Solids. 352 (2006) 180-184.

DOI: 10.1016/j.jnoncrysol.2005.11.009

Google Scholar

[6] V.M. Fokin, E.D. Zanotto, Continuous compositional changes of crystal and liquid during crystallization of a sodium calcium silicate glass, J. Non-Crystalline Solids. 353 (2007) 2459-2468.

DOI: 10.1016/j.jnoncrysol.2007.04.014

Google Scholar

[7] I.I. Danilova, V.V. Markin, O.V. Smolyakova, et al, Manufacture amorphous and nanocrystal tapes by using continues casting machine, Electrometallurgy. 6 (2008) 25-30.

Google Scholar

[8] D. Wang, Y. Liu, Z. Gao, et al, A multi-peak transformation kinetics model and its application to the isothermal crystallization of Mg65Cu25Y10 amorphous alloy, J. Non-Crystalline Solids. 354 (2008) 3990-3999.

DOI: 10.1016/j.jnoncrysol.2008.05.023

Google Scholar

[9] M.B. Tošic, V.D. Zivanovic, S.R. Grujic, et al, A study of the primary crystallization of a mixed anion silicate glass, J. Non-Crystalline Solids. 354 (2008) 3694-3704.

DOI: 10.1016/j.jnoncrysol.2008.04.011

Google Scholar

[10] M.J. Schweiger, P.Hrma, C.J. Humrickhouse, et al, Cluster formation of silica particles in glass batches during melting, J. Non-Crystalline Solids. 356 (2010) 1359-1367.

DOI: 10.1016/j.jnoncrysol.2010.04.009

Google Scholar

[11] Avrami M. Kinetics of Phase Change [J]. J. Chem. Phys. 1939, 7 (12): 1069.

Google Scholar

[12] Avrami M. Kinetics of Phase Change [J], J. Chem. Phy., 1940, 8 (2):133.

Google Scholar

[13] Avrami M. Kinetics of Phase Change [J], J. Chem. Phys. 1941, 9 (2): 123.

Google Scholar

[14] А.N. Kolmogorov, To the statistical theory of the metals crystallization, Izv. Akad. Nauk SSSR. Ser. Math. 3 (1937) 355-358.

Google Scholar

[15] J.W.P. Schmelzer, R. Muller, J. Moller,et al, Theory of nucleation in viscoelastic media: application to phase formation in glassforming melts, J. Non-Crystalline Solids. 315 (2003) 144-160.

DOI: 10.1016/s0022-3093(02)01428-x

Google Scholar

[16] V.A. Shneidman, E.V. Goldstein, Nucleation time lag at nano-sizes, J. Non-Crystalline Solids. 351 (2005) 1512-1521.

DOI: 10.1016/j.jnoncrysol.2005.03.039

Google Scholar

[17] D. Wang, Y. Liu, Y. Han, et al, Kinetic consideration for the incubation of the phase transformation and its application to the crystallization of amorphous alloy, Appl Phys A. 92 (2008) 703-707.

DOI: 10.1007/s00339-008-4627-7

Google Scholar

[18] J.F. Xu, F. Liu, S.J. Song, et al, Application of recipes for isothermal and isochronal solid-state transformations, J. Non-Crystalline Solids. 356 (2010) 1236-1245.

DOI: 10.1016/j.jnoncrysol.2010.04.034

Google Scholar

[19] A.D. Drozin, Theoretical analysis of the heterophase chemical reactions products growth in solution, Russian Metallurgy (Metally). 5 (1987) 73-77.

Google Scholar

[20] A.D. Drozin, V.E. Roshchin., D.Ya Povolotskii, Mathematical model of the deoxidation products growth in liquid metal, Russian Metallurgy (Metally). 6 (1987) 28-33.

Google Scholar

[21] PA. Gamov, A. D. Drozin, M. V. Dudorov, et. al, Model for Nanocrystal Growth in an Amorphous Alloy, Russian Metallurgy (Metally). 11 (2012) 1002-1005.

DOI: 10.1134/s0036029512110055

Google Scholar

[22] G.S. Ershov, V.G. Chernjakov, Structure and property of liquid and firm metals, Metallurgy, Moscow, (1978).

Google Scholar

[23] P.P. Arsentev, L.A. Koledov, Metal melts and their properties, Metallurgy, Moscow, (1976).

Google Scholar

[24] V.E. Zinovev Thermal properties of metals at heats, Metallurgy, Moscow, (1989).

Google Scholar

[25] V. Seith, Diffusion in Metallen, Springer, Berlin, (1955).

Google Scholar

[26] V.V. Maslov, Kinetics and the mechanism of crystallization of amorphous alloy Fe85B15 in the presence of soluble impurities, Physics of metals and the newest technology, 19(2) (1997) 17-26.

Google Scholar

[27] M.E. Drits, Properties of elements, Metallurgy, Moscow, (1989).

Google Scholar