[1]
R. Parameshwari, P. Priyarshini, G. Chandrasekaran, Optimization, structural, spectroscopic and magnetic studies on stable akaganeite nanoparticles via co-precipitation method, American Journal of Materials Science. 1(1) (2011) 18-25.
Google Scholar
[2]
J.Cai, J. Liu, Z. Gao, A.Navrotsky, S. L. Suib, Synthesis and anion exchange of tunnel structure akaganeite, Chemistry of Materials, 13(12) (2001) 4595-4602.
DOI: 10.1021/cm010310w
Google Scholar
[3]
K. Ståhl, K. Nielsen, J. Jiang, B. Lebech, J. Hanson, P. Norby, J. van Lanschot, On the akaganeite crystal structure, phase transformations and possible role in post-excavational corrosion of iron artefacts, Corrosion Science. 45(11), (2003) 2563-2575.
DOI: 10.1016/s0010-938x(03)00078-7
Google Scholar
[4]
P.M. Solozhenkin, E.A. Deliyanni, V.N. Bakoyannakis, Removal of As(V) ions from solution by akaganeite β-FeO(OH) nanocrystals, Journal Mineral Science. 39 (2003) 287-296.
DOI: 10.1023/b:jomi.0000013788.31888.b6
Google Scholar
[5]
E.A. Deliyanni, L. Nalbandian, K.A. Matis, Adsorptive removal of arsenites by a nanocrystalline hybrid surfactant-akaganeite sorbent, Journal of Colloid and Interface Science. 302 (2006) 458-466.
DOI: 10.1016/j.jcis.2006.07.007
Google Scholar
[6]
F. Kolbe, H. Weiss, P. Morgenstern, Sorption of aqueous antimony and arsenic species onto akaganeite, Journal of Colloid and Interface Science. 357 (2011) 460-465.
DOI: 10.1016/j.jcis.2011.01.095
Google Scholar
[7]
R. Chitrakar, S. Tezuka, A. Sonoda et al., Phosphate adsorption on synthetic goethite and akaganeite, Colloid Interface Science. 298 (2006) 602-608.
DOI: 10.1016/j.jcis.2005.12.054
Google Scholar
[8]
E.A. Deliyanni, K.A. Matis, Sorption of Cd ions onto akaganeite-type nanocrystals, Separation and Purification Technology. 45 (2005) 96-102.
DOI: 10.1016/j.seppur.2005.02.012
Google Scholar
[9]
N.K. Lazaridis, D.N. Bakoyannakis, E.A. Deliyanni, Chromium(VI) sorptive removal from aqueous solutions by nanocrystalline akaganеite, Chemosphere. 58 (2005) 65-73.
DOI: 10.1016/j.chemosphere.2004.09.007
Google Scholar
[10]
Solozhenkin, P.M., Deliyanni, E.A., Bakoyannakis, V.N. et al. Removal of As(V) ions from solution by akaganeite bgr-FeO(OH) nanocrystals, Journal of Mining Science 39(3) (2003) 39: 287.
DOI: 10.1023/b:jomi.0000013788.31888.b6
Google Scholar
[11]
Nguyen Thi Thuy Trang, Lu Thi Mong Thy, Pham Mai Cuong, Fabrication and characterization of akaganeite/graphene oxide nanocomposite for arsenic removal from water, Proc of thq 2nd Intrernational Conference on Applied Sciences (ICAS-2), (2018).
DOI: 10.1063/1.5033401
Google Scholar
[12]
J. Hlavay, K. Polyak, Determination of surface properties of iron hydroxide-coated alumina adsorbent prepared for removal of arsenic from drinking water, J. Colloid Interf. Sci. 284(1) (2005) 71-77.
DOI: 10.1016/j.jcis.2004.10.032
Google Scholar
[13]
D. Mohan, C.U. Pittman Jr., Arsenic removal from water/wastewater using adsorbents. A critical review, Journal of Hazardous Materials. 142 (2007) 1-53.
DOI: 10.1016/j.jhazmat.2007.01.006
Google Scholar
[14]
A. Millan, A. Urtizberea, E. Natividad, etc., Akaganeite polymer nanocomposites, Polymer. 50(5) (2009) 1088-1094.
DOI: 10.1016/j.polymer.2009.01.034
Google Scholar
[15]
J.C. Villalba, S. Berezoski, K.A. Cavicchiolli, Structural refinement and morphology of synthetic akaganeite crystals, [β-FeO(OH)], Materials Letters. 104 (2013) 17-20.
DOI: 10.1016/j.matlet.2013.04.004
Google Scholar
[16]
E. Deliyanni, D.Bakoyannakis, A. Zouboulis, K. Matis, Development and study of iron-based nanosorbents, Journal of Mining and Metallurgy. 40 (2004) 1-9.
DOI: 10.2298/jmmb0401001d
Google Scholar
[17]
C. Reґmazeilles, Ph. Refait, On the formation of b-FeOOH (akaganeґite) in chloride-containing environments, Corrosion Science. 49 (2007) 844–857.
DOI: 10.1016/j.corsci.2006.06.003
Google Scholar
[18]
S.V. Mamyachenkov, V.V. Egorov, O.Yu. Makovskaya, A.M. Starkov, Sorption removal of fluorine ions, incoming with the recycling zinc-bearing materials, International Conference with Elements of School for Young Scientists on Recycling and Utilization of Technogenic Formations, KnE Materials Science. (2017) 121-126.
DOI: 10.18502/kms.v2i2.957
Google Scholar
[19]
L.C. Snow, S.J. Smith, B.E. Lang, et al., Heat capacity studies of the iron oxyhydroxides akaganéite (b-FeOOH) and lepidocrocite (c-FeOOH), J. Chem. Thermodynamics. 43 (2011) 190-199.
DOI: 10.1016/j.jct.2010.08.022
Google Scholar
[20]
D.D. Wagman, W.H. Evans, et al., The NBS tables of chemical thermodynamic properties, J. Phys. Chem. Ref. Data, Vol. 11, Suppl. 2 (1982).
Google Scholar
[21]
R.K. Iler, The Chemistry of silica: Solubility, Polymerization, Colloid and Surface Properties and Biochemistry of Silica, Wiley-Interscience. (1979).
Google Scholar