Application of Inorganic Fe(III)-Based Sorbent for Arsenic Sorption

Article Preview

Abstract:

The efficiency of iron oxy-hydrate application for cleaning aqueous media from arsenic has been studied. It is proposed to precipitate the active layer to a coarse-grained carrier to improve filterability. Metallurgical alumina and quartz sand are considered as carrier materials. Conditions for the synthesis of inorganic sorbent based on iron oxy-hydrate are established. The dependence of the sorbent capacity on the pH of the solution is determined. IR spectra of the sorbent before and after sorption of arsenic are given, and the mechanism of sorption of arsenic is proposed. The data on the capacity of the obtained sorbent modifications for the sorption of As (III) ions under static conditions are presented.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

601-607

Citation:

Online since:

February 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Parameshwari, P. Priyarshini, G. Chandrasekaran, Optimization, structural, spectroscopic and magnetic studies on stable akaganeite nanoparticles via co-precipitation method, American Journal of Materials Science. 1(1) (2011) 18-25.

Google Scholar

[2] J.Cai, J. Liu, Z. Gao, A.Navrotsky, S. L. Suib, Synthesis and anion exchange of tunnel structure akaganeite, Chemistry of Materials, 13(12) (2001) 4595-4602.

DOI: 10.1021/cm010310w

Google Scholar

[3] K. Ståhl, K. Nielsen, J. Jiang, B. Lebech, J. Hanson, P. Norby, J. van Lanschot, On the akaganeite crystal structure, phase transformations and possible role in post-excavational corrosion of iron artefacts, Corrosion Science. 45(11), (2003) 2563-2575.

DOI: 10.1016/s0010-938x(03)00078-7

Google Scholar

[4] P.M. Solozhenkin, E.A. Deliyanni, V.N. Bakoyannakis, Removal of As(V) ions from solution by akaganeite β-FeO(OH) nanocrystals, Journal Mineral Science. 39 (2003) 287-296.

DOI: 10.1023/b:jomi.0000013788.31888.b6

Google Scholar

[5] E.A. Deliyanni, L. Nalbandian, K.A. Matis, Adsorptive removal of arsenites by a nanocrystalline hybrid surfactant-akaganeite sorbent, Journal of Colloid and Interface Science. 302 (2006) 458-466.

DOI: 10.1016/j.jcis.2006.07.007

Google Scholar

[6] F. Kolbe, H. Weiss, P. Morgenstern, Sorption of aqueous antimony and arsenic species onto akaganeite, Journal of Colloid and Interface Science. 357 (2011) 460-465.

DOI: 10.1016/j.jcis.2011.01.095

Google Scholar

[7] R. Chitrakar, S. Tezuka, A. Sonoda et al., Phosphate adsorption on synthetic goethite and akaganeite, Colloid Interface Science. 298 (2006) 602-608.

DOI: 10.1016/j.jcis.2005.12.054

Google Scholar

[8] E.A. Deliyanni, K.A. Matis, Sorption of Cd ions onto akaganeite-type nanocrystals, Separation and Purification Technology. 45 (2005) 96-102.

DOI: 10.1016/j.seppur.2005.02.012

Google Scholar

[9] N.K. Lazaridis, D.N. Bakoyannakis, E.A. Deliyanni, Chromium(VI) sorptive removal from aqueous solutions by nanocrystalline akaganеite, Chemosphere. 58 (2005) 65-73.

DOI: 10.1016/j.chemosphere.2004.09.007

Google Scholar

[10] Solozhenkin, P.M., Deliyanni, E.A., Bakoyannakis, V.N. et al. Removal of As(V) ions from solution by akaganeite bgr-FeO(OH) nanocrystals, Journal of Mining Science 39(3) (2003) 39: 287.

DOI: 10.1023/b:jomi.0000013788.31888.b6

Google Scholar

[11] Nguyen Thi Thuy Trang, Lu Thi Mong Thy, Pham Mai Cuong, Fabrication and characterization of akaganeite/graphene oxide nanocomposite for arsenic removal from water, Proc of thq 2nd Intrernational Conference on Applied Sciences (ICAS-2), (2018).

DOI: 10.1063/1.5033401

Google Scholar

[12] J. Hlavay, K. Polyak, Determination of surface properties of iron hydroxide-coated alumina adsorbent prepared for removal of arsenic from drinking water, J. Colloid Interf. Sci. 284(1) (2005) 71-77.

DOI: 10.1016/j.jcis.2004.10.032

Google Scholar

[13] D. Mohan, C.U. Pittman Jr., Arsenic removal from water/wastewater using adsorbents. A critical review, Journal of Hazardous Materials. 142 (2007) 1-53.

DOI: 10.1016/j.jhazmat.2007.01.006

Google Scholar

[14] A. Millan, A. Urtizberea, E. Natividad, etc., Akaganeite polymer nanocomposites, Polymer. 50(5) (2009) 1088-1094.

DOI: 10.1016/j.polymer.2009.01.034

Google Scholar

[15] J.C. Villalba, S. Berezoski, K.A. Cavicchiolli, Structural refinement and morphology of synthetic akaganeite crystals, [β-FeO(OH)], Materials Letters. 104 (2013) 17-20.

DOI: 10.1016/j.matlet.2013.04.004

Google Scholar

[16] E. Deliyanni, D.Bakoyannakis, A. Zouboulis, K. Matis, Development and study of iron-based nanosorbents, Journal of Mining and Metallurgy. 40 (2004) 1-9.

DOI: 10.2298/jmmb0401001d

Google Scholar

[17] C. Reґmazeilles, Ph. Refait, On the formation of b-FeOOH (akaganeґite) in chloride-containing environments, Corrosion Science. 49 (2007) 844–857.

DOI: 10.1016/j.corsci.2006.06.003

Google Scholar

[18] S.V. Mamyachenkov, V.V. Egorov, O.Yu. Makovskaya, A.M. Starkov, Sorption removal of fluorine ions, incoming with the recycling zinc-bearing materials, International Conference with Elements of School for Young Scientists on Recycling and Utilization of Technogenic Formations, KnE Materials Science. (2017) 121-126.

DOI: 10.18502/kms.v2i2.957

Google Scholar

[19] L.C. Snow, S.J. Smith, B.E. Lang, et al., Heat capacity studies of the iron oxyhydroxides akaganéite (b-FeOOH) and lepidocrocite (c-FeOOH), J. Chem. Thermodynamics. 43 (2011) 190-199.

DOI: 10.1016/j.jct.2010.08.022

Google Scholar

[20] D.D. Wagman, W.H. Evans, et al., The NBS tables of chemical thermodynamic properties, J. Phys. Chem. Ref. Data, Vol. 11, Suppl. 2 (1982).

Google Scholar

[21] R.K. Iler, The Chemistry of silica: Solubility, Polymerization, Colloid and Surface Properties and Biochemistry of Silica, Wiley-Interscience. (1979).

Google Scholar