[1]
А. Jarošíková, V. Ettler, M. Mihaljevič, P. Drahota, A. Culka, M. Racek, Characterization and pH-dependent environmental stability of arsenic trioxide-containing copper smelter flue dust. Journal of Environmental Management. 209 (2018) 71-80.
DOI: 10.1016/j.jenvman.2017.12.044
Google Scholar
[2]
А. Jarošíková, V. Ettler, M. Mihaljevič, V. Penížek, P. Drahota, Transformation of arsenic-rich copper smelter flue dust in contrasting soils: A 2-year field experiment. Environmental Pollution. 237 (2018) 83-92.
DOI: 10.1016/j.envpol.2018.02.028
Google Scholar
[3]
C. Lanzerstorfer, Flowability of various dusts collected from secondary copper smelter off-gas, Particuology. 25 (2016) 68-71.
DOI: 10.1016/j.partic.2015.05.003
Google Scholar
[4]
B.S. Ivanov, Т.А. Lytayeva, A.Ya. Baudouin, G.V. Petrov, M.A. Pashkevich., R.F. Patent 2588218 (2016).
Google Scholar
[5]
T. Havlik, В. Friedrich, S. Stopic, Pressure Leaching of EAF Dust with Sulphuric Acid , World of Metallurgy. ERZMETALL. 57(2) (2004) 113-120.
DOI: 10.1016/j.hydromet.2004.10.008
Google Scholar
[6]
J. Veres, S. Jakabsky, M. Lovas, Zinc recovery from iron and steel making wastes by conventional and microwave assisted leaching, Acta Montanistica Slovaca. 16(3) (2011) 185-191.
Google Scholar
[7]
V. Montenegro, H. Sano, T. Fujisawa, Recirculation of high arsenic content copper smelting dust to smelting and converting processes. Minerals Engineering. 49 (2013) 184-189.
DOI: 10.1016/j.mineng.2010.03.020
Google Scholar
[8]
T. Havlik, F. Kukurugya, D. Orac, L. Parilak, Acidic Leaching of EAF Steelmaking Dust, World of Metallurgy. ERZMETALL. 65 (2012) 48-56.
Google Scholar
[9]
A. Kekki, J. Aromaa, O. Forsén, Leaching behavior of five different stainless steel production dusts in sulphuric acid, Kammel's Quo Vadis Hydrometallurgy. 6 (2012) 86-92.
Google Scholar
[10]
V.G. Skopov, V.V. Belyaev, A.V. Matveev, Withdrawal from the market and a separate processing of the dust electrostatic precipitators smelting Vanyukov JSC Sredneuralskiy copper smelter,. Non-ferrous metals. 8 (2013) 55-59.
Google Scholar
[11]
D.B. Dreissinger, E. Peters, G. Morgan, The hydrometallurgical treatment of carbon steel electric arc dust by the UBC Chaparral process, Hydrometallurgy. 25(2) (1990) 137-152.
DOI: 10.1016/0304-386x(90)90035-z
Google Scholar
[12]
G.V. Skopov, A.V. Matveev, Co-processing of polymetallic semi-products of metallurgical production. Metallurg. 8 (2011) 73-76.
Google Scholar
[13]
Y. Chen, T. Liao, G. Li, B. Chen, X. Shi, Recovery of bismuth and arsenic from copper smelter flue dusts after copper and zinc extraction, Minerals Engineering. 39 (2012) 23-28.
DOI: 10.1016/j.mineng.2012.06.008
Google Scholar
[14]
L. Sarka, L. Juraj, M. Dalibor, Selective leaching of zinc from zinc ferrite with hydrochloric acid, Hydrometallurgy. 95(3-4) (2009) 179-182.
DOI: 10.1016/j.hydromet.2008.05.040
Google Scholar
[15]
B.Ya. Ivanov, A.C. Yaroslavtsev, G.N. Vanyushkina, Hydrometallurgical processing of fine converter dusts of copper smelting production, Non-ferrous metals. 4 (1982) 16-21.
Google Scholar
[16]
G.V. Skopov, A.V. Matveev, Co-processing of polymetallic semi-products of metallurgical production. Metallurg. 8 (2011) 73-76.
Google Scholar
[17]
P. Oustadakis, P.E. Tsakiridis, A. Katsiapi, S. Agatzini-Leonardo, Hydrometallurgical process for zinc recovery from electric arc furnace dust (EAFD). Part I: Characterization and leaching by diluted sulphuric acid, Journal of Haz-ardous Materials. 179 (2010) 1-7.
DOI: 10.1016/j.jhazmat.2010.01.059
Google Scholar
[18]
K.A. Karimov, S.S. Naboichenko, Sulfuric acid leaching of high-arsenic dust from copper smelting Metallurgist. (2016) 1-4.
DOI: 10.1007/s11015-016-0313-8
Google Scholar
[19]
E.N. Selivanov, G.V. Skopov, R.I. Gulyaeva, A.V. Matveev, The composition of the dust electrostatic precipitators of the Vanyukov furnace. Metallurg. 5 (2014) 92-95.
DOI: 10.1007/s11015-014-9928-9
Google Scholar
[20]
XU Zhi-feng, Li Qiang, NIE Hua-ping. Pressure leaching technique of smelter dust with high-copper and high-arsenic, Transactions of nonferrous metals society of China, 20 (2010) 176-181.
DOI: 10.1016/s1003-6326(10)60035-0
Google Scholar
[21]
V.I. Neustroev, K.A. Karimov, S.S. Naboichenko, A.A. Kovyazin, Autoclave leaching of arsenic from copper concentrate and matte, Metallurgist. 59(1-2) (2015) 177-179.
DOI: 10.1007/s11015-015-0080-y
Google Scholar
[22]
K.A. Karimov, S.S. Naboichenko, V.I. Neustroev, Pressure leaching of copper arsenic-containing mattes with copper sulfate solutions, Russian Journal of Non-Ferrous Metals. 57(1) (2016) 1-6.
DOI: 10.3103/s1067821216010077
Google Scholar
[23]
A.I. Ryumin, N.V. Mironkina, Investigation of the kinetic regularities of the dissolution of lead sulfate in solutions of chloride and sodium hydroxide, Journal of Siberian Federal University. Series: Engineering and technology. 6(4) (2013) 450-454.
Google Scholar
[24]
A.K. Ter-Oganesyants, E.F. Grabchak, N.N. Anisimova and others. Non-ferrous metals. 11 (2006) 27.
Google Scholar
[25]
N.V. Mironkina, O.N. Vyazova, A.D. Mikhnev, A.I. Ryumin, Study of the solubility of lead sulfide and silver chloride in chlorous sodium solutions, Bulletin of the Siberian State Aerospace University. Academician M.F. Reshetnev. 2(15) (2007) 80-82.
Google Scholar