An Attempt to Establish the Lipase Gene Sequence of Alcaligenes Sp. JG3 Using Internal Primer

Article Preview

Abstract:

Alcaligenes sp. JG3 is a local strain bacterium from Indonesia, isolated from cultivated corn field of Central Java. This bacterium is able to produce lipase with fairly high activity. In order to do lipase gene sequence characterization, two sets of primer pair were used in this study (primer Fjg3 5’- ATGACCGAGCTGACTGTAG-3’, Rjg3 5’-TCAGGAGGGGTAAATCCAC-3’ and internal primer Fi 5’-TGACCCATGACCAGGCGGAA-3’ and Ri 5’-TTCGCCTGGTCATGGGTCA-3’). The complete lipase JG3 gene sequence consists of 1081 bp from start codon ATG to the stop codon of TGA. Lipase JG3 had high similarity to another lipase from genus Alcaligenaceae which was up to 90%. However, the 3D protein visualization analysis indicated that this lipase JG3 also has the characteristic of ABC transporter protein.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

57-62

Citation:

Online since:

March 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] O. Kirk, T.V. Borchert, C.C Fuglsang, Industrial enzyme applications, Curr. Opin. Biotechnol. 13 (2002) 345-351.

Google Scholar

[2] M. Akimoto, Y. Nagashima, D. Sato, A kinetic study on lipase-catalyzed interesterification of soybean oil with oleic acid in a continuous packed bed reactor, J. Appl. Biochem. Biotechnol. 81 (1999) 131-142.

DOI: 10.1385/abab:81:2:131

Google Scholar

[3] A. Pandey, S. Benjamin, C.R. Soccol, P. Nigam, N. Krieger, The realm of microbial lipases in biotechnology, Biotechnol. Appl. Biochem. 29 (1999) 119-131.

Google Scholar

[4] R. Gupta, N. Gupta, N. Rathi, Bacterial lipases: An overview of production, purification and biochemical properties, J. Appl. Microbiol. Biotech. (2004) 763-781.

DOI: 10.1007/s00253-004-1568-8

Google Scholar

[5] R. Aravindan, P. Anbumathi, R. T. Viruthagiri, Lipase applications in food industry, Indian J. Biotech. 6 (2004) 141-158.

Google Scholar

[6] K.J. Patil, M.Z. Chopda, R.T. Mahajan, Lipase Biodiversity, Indian J. Sci. and Tech. (2011) 71-982.

Google Scholar

[7] S.N. Ethica, Detection of Genes Involved in Glycerol Metabolism of Alcaligenes sp. JG3, Ph.D. Thesis, UGM, Yogyakarta, (2014).

Google Scholar

[8] P. Lestari, S.N. Handayani, Oedjijono, Biochemical properties of crude extracellular lipase fromxAzospirillumxsp. JG3., Molekul 4 (2009) 73-82.

DOI: 10.20884/1.jm.2009.4.2.65

Google Scholar

[9] B. Austin, C. Rodgers, J. Forns, R. Colwell, Alcaligenes faecalis subsp. homari subsp. nov., a new group of bacteria isolated from moribund lobsters, Int. J. Syst. Bacteriol. (1981) 72-76.

DOI: 10.1099/00207713-31-1-72

Google Scholar

[10] Y. Xu, R. Xiao, Lipase from Genus Rhizopus: characteristics, expression, protein engineering and application, Prog. Lipid Res. 64 (2016) 57-68.

DOI: 10.1016/j.plipres.2016.08.001

Google Scholar

[11] S.Y. An, S.W. Kim, Y.L. Choi, Y.S. Cho, W.H. Joo, Y.C. Lee, Cloning, expression in Escherichia coli and enzymatic properties of a lipase from Pseudomonas sp. SW-3, J. Microbiol. 41 (2003) 96-101.

Google Scholar

[12] A.R. Cho, S.K. Yoo, E.J. Kim, Cloning, sequencing and expression in E.coli of thermophilic lipase from Bacillus thermoleovorans, Microbiol. Lett. 186 (2000) 235-238.

DOI: 10.1111/j.1574-6968.2000.tb09110.x

Google Scholar

[13] D.N. Lang, W. Yang. Y. Wang, Y. Shen, B. Yang, A novel cold-active lipase from Candida albicans: cloning, expression and characterization of the recombinant enzyme, Int. J. Mol. Sci. 12 (2011) 3950-3965.

DOI: 10.3390/ijms12063950

Google Scholar

[14] E.M. Zakary, M.Z. Naif, G.M.O. Mohammed, Detection of Staphylococcus aureus in bovine milk and its product by real-time PCR assay, J. Biotechnol. Biochem. 6 (2011) 171-177.

Google Scholar

[15] S.N. Ethica, D.R. Nataningtyas, P. Lestari, Istini, E. Semiarti, J. Widada, T.J. Raharjo, Comparative evaluation of conventional versus rapid methods for amplifiable genomic DNA isolation of cultured Azospirillum sp. JG3, Indones. J. Chem. 13 (2013) 248-253.

DOI: 10.22146/ijc.21284

Google Scholar

[16] J. Yang, Y. Zhang, Protein structure and function prediction using I-TASSER, Curr. Protoc. Bioinform. 52 (2015) 1-15.

Google Scholar

[17] H. Akatsuka, E. Kawai, K. Omori, T. Shibatami, The three genes lipB, lipC and lipD involved in the extracellular secretion of the Serratia marcescens lipase which lacks an N-terminal signal peptide, J. Bacteriol. 177 (1995) 6381-6389.

DOI: 10.1128/jb.177.22.6381-6389.1995

Google Scholar

[18] J.H. Ahn, J.G. Pan, J.S. Rhee, 1999. Identification of the triDEF ABC transporter specific for lipase in Pseudomonas fluorescens SIK W1, J. Bacteriol. 181 (1999) 1847-1852.

DOI: 10.1128/jb.181.6.1847-1852.1999

Google Scholar

[19] F. Rosenau, K.E. Jaeger, Bacterial lipases from Pseudomonas: regulation of gene expression and mechanisms of secretion, Biochem. 82 (2000) 1023-1032.

DOI: 10.1016/s0300-9084(00)01182-2

Google Scholar

[20] Y. Park, Y. Moon, J. Ryo, N. Kim, H. Cho, J. H. Ahn, Identification of the minimal region in lipase ABC transporter recognition domain of Pseudomonas fluorescens for secretion and fluorescence of green fluorescent protein, Microb. Cell Fact. 11 (2012) 1-12.

DOI: 10.1186/1475-2859-11-60

Google Scholar