Chemical Synthesis of Monosaccharide Lauric Acid Esters as Antibacterial and Antifungal Agents

Article Preview

Abstract:

Synthesis of glucose laurate (GLC12), fructose laurate (FRU12), and galactose laurate (GAL12) as antibacterial and antifungal agents has been carried out. The synthesis of GLC12, FRU12, and GAL12was conducted by reacting lauroyl chloride with glucose, fructose, and galactose in the presence of pyridine in 36.1; 77.8; and 72,2% yields respectively for GLC12, FRU12 and GAL12.Antibacterial and antifungal activity test was done using well diffusion method towards Gram-negative bacteria (Salmonella thypimurium and Escherechia coli), Gram-positive bacteria (Staphylococcus aureus and Bacillussubtilis), Candida albicans fungus, DMSO as a negative control, and 4-isopropyl-3-methylphenol 1% as a positive control. The best antibacterial activity was shown by FRU12at 12.5% of concentration against S.aureusand B.subtilis bacteria.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

63-68

Citation:

Online since:

March 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Information on http://www.worldatlas.com/, Updated on April 25, 2017 By James Burton, Accessed on March 20, (2018).

Google Scholar

[2] M. DebMandal, S. Mandal, Coconut (Cocos nucifera L.: Arecaceae): In health promotion and disease prevention, Asian Pac. J. Trop. Med. 4 (2011) 241-247.

DOI: 10.1016/s1995-7645(11)60078-3

Google Scholar

[3] S. Lieberman, M.G. Enig, H.G. Preuss, A review of monolaurin and lauric acid-natural virucidal and bactericidal agents, Altern. Complement. Ther. 12 (2006) 310-314.

DOI: 10.1089/act.2006.12.310

Google Scholar

[4] F.O. Nitbani, Jumina, D. Siswanta, E.N. Sholikhah, Isolation and antibacterial activity test of lauric acid from crude coconut oil (Cocos nucifera L.), Procedia Chem. 18 (2016) 132-140.

DOI: 10.1016/j.proche.2016.01.021

Google Scholar

[5] J.C. Hierholzer, J.J. Kabara, In vitro effects of monolaurin compound on enveloped RNA and DNA viruses, J. Food Saf. 4 (1982) 1-12.

DOI: 10.1111/j.1745-4565.1982.tb00429.x

Google Scholar

[6] Jumina, D. Siswanta, E.N. Sholikhah, Sintesis Monolaurin dari Minyak Kelapa dan Uji Aktivitasnya sebagai Imunostimulan, Laporan Akhir Hibah PUPT UGM, Yogyakarta, (2015).

Google Scholar

[7] J. Hong, X-A. Zeng, C.S. Brennan, M. Brennan, Z. Han, Recent advances in techniques for starch esters and the applications: a review, Foods 5 (2016) 50.

DOI: 10.3390/foods5030050

Google Scholar

[8] J. Staron, J.M. Da brwski, E. Cichon, M. Guzik, Lactose esters: synthesis and biotechnological applications, Crit. Rev. Biotechnol. 38 (2018) 245-258.

Google Scholar

[9] N.S. Neta, J.A. Teixera, L.R. Rodrigues, Sugar ester surfactants: enzymatic synthesis and applications in food industry, Crit. Rev. Food Sci. 55 (2015) 595–610.

DOI: 10.1080/10408398.2012.667461

Google Scholar

[10] T. Madsen, G. Petersen, C. Seiero, J. Torslov, Biodegradability and aquatic toxicity of glycoside surfactants and a nonionic alcohol ethoxylate. J. Am. Oil Soc. 73 (1996) 929-933.

DOI: 10.1007/bf02517997

Google Scholar

[11] S.W. Chang, J.F. Shaw, Biocatalysis for the production of carbohydrate esters, New Biotechnol. 26 (2009) 109-116.

Google Scholar

[12] P. Wiecinska, T. Mizerski, M. Szafran. Monoacryloyl esters carbohidrates: synthesis, polymerization and application in ceramic technology, Carbohyd. Polym. 111 (2014) 610-618.

DOI: 10.1016/j.carbpol.2014.05.023

Google Scholar

[13] A. Smith, P. Nobmann, G. Henehan, P. Bourke, J. Dunne, Synthesis and antimicrobial evaluation of carbohydrate and polyhydroxylated noncarbohydrate fatty acid esters and ether derivatives, Carbohyd. Res. 343 (2008) 2557-2566.

DOI: 10.1016/j.carres.2008.07.012

Google Scholar

[14] A.A. Khan, S.H. Chee, R.J. McLaughlin, et al, Long-chain lipids are required for the innate immune recognition of trahalose diesters by macrophages, Chem. Bio. Chem. 12 (2011) 2572-2576.

DOI: 10.1002/cbic.201100451

Google Scholar

[15] C. Khoury, M. Minier, F. Le Goffic, M.N. Rager, Synthesis and properties of surfactants derived from N-acetyl-d-glucosamine. Carbohyd. Chem. 26 (2007) 395-409.

DOI: 10.1080/07328300701634804

Google Scholar

[16] M.N. Alfindee, Q. Zhang, Y.P Subedi, et.al, One-step synthesis of carbohydrate esters as antibacterial and antifungal agents, Bioorg. Med. Chem. 25 (2018) 765-774.

DOI: 10.1016/j.bmc.2017.12.038

Google Scholar

[17] K. Dzulkefly, S.Y Koon, A. Kasiim, A. Sharif, A.H. Abdullah, Chemical modification of sago starch by solventless esterification with fatty acid chlorides. Malay. J. Anal. Sci. 11 (2007) 395-399.

Google Scholar

[18] J. Aburto, I. Alric, E. Borredon, Preparation of long-chain esters of starch using fatty acid chlorides in the absence of an organic solvent, Starch 51 (1999) 132-135.

DOI: 10.1002/(sici)1521-379x(199904)51:4<132::aid-star132>3.0.co;2-z

Google Scholar