Further Development of Process Maps for TRIP Matrix Composites during Powder Forging

Article Preview

Abstract:

Process maps according to Parasad et al. are already widely used to make statements about the formability of materials and their forming energy. However, these process maps only apply to conventional incompressible materials. At the TU Bergakademie Freiberg, these process maps have already been extended for particle-reinforced incompressible solid materials with a homogeneous particle distribution. The next step is to adapt the model for compressible particle-reinforced matertials so that they can also be used in powder metallurgy. The problem here is that the volume decreases as a result of compaction during powder forming. In powder metallurgy, however, compaction plays an important role. On the one hand, the compaction of the components leads to an increase in the material properties. On the other hand, pores pose a high risk of fractures and cracking. For this reason, it is the aim of this paper to make the existing process maps for incompressible materials usable for compressible materials by corresponding adaptations of the models prevailing in powder metallurgy. Furthermore, the effects of a homogeneous particle distribution and a graded particle distribution within the TRIP matrix composites on the process maps will be investigated. For this reason, process maps are produced in the temperature ranges between 700 – 1050 °C, with forming speeds of 0.001 – 100 s-1 and residual porosity of 10 – 30 %. For this purpose, specimens with corresponding residual porosity and homogeneously distributed ZrO2 5 vol.%, 10 vol.%, 15 vol.% and 20 vol.% as well as a graded layer structure of corresponding ZrO2 proportions are prepared. With the aid of these specimens, flow curves are determined and adjusted at appropriate temperatures and forming speeds during compression tests. The energy dissipation and an instability map are then modelled from these flow curves and a process map is derived. It was found that with increasing ZrO2 content in the homogeneous and the graded structure, the areas that allow damage-free forming become smaller. The same applies with decreasing residual porosity. Nevertheless, the areas, which allow failure-free forming, are larger than the possible forming areas of solid components. However, the power dissipation efficiency of incompressible specimens is significantly lower than that of compressible specimen [1]. In addition, it was observed that with increasing ZrO2 content and decreasing residual porosity, the efficiency of the power dissipation in the formable areas decreases. It was also found that the distribution of the reinforcing particles has a significant influence on the flow curves and the associated process maps, then the graded specimen do not represent a superposition of the individual process maps of the homogeneous specimens.

You have full access to the following eBook
You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] S. Guk, D. Milisova, K. Pranke, KEM 2016, 684, 86 – 96.

DOI: 10.4028/www.scientific.net/KEM.684.86

Google Scholar

[2] N. Chawla, Y.-L. Shen, Adv. Eng. Mater. 2001, 3 (6), 357 – 370.

Google Scholar

[3] J. W. Kaczmar, K. Pietrzak, W. Włosiński, Journal of Materials Processing Technology 2000, 106 (1-3), 58 – 67.

DOI: 10.1016/S0924-0136(00)00639-7

Google Scholar

[4] D. MIRACLE, Composites Science and Technology 2005, 65 (15-16), 2526 – 2540.

DOI: 10.1016/j.compscitech.2005.05.027

Google Scholar

[5] H. Biermann, U. Martin, C. G. Aneziris, A. Kolbe, A. Müller, W. Schärfl, M. Herrmann, Adv. Eng. Mater. 2009, 43, NA-NA.

DOI: 10.1002/adem.200900210

Google Scholar

[6] A. Glage, C. Weigelt, J. Räthel, H. Biermann, International Journal of Fatigue 2014, 65, 9 – 17.

DOI: 10.1016/j.ijfatigue.2013.11.025

Google Scholar

[7] D. Ehinger, L. Krüger, U. Martin, C. Weigelt, C. G. Aneziris, International Journal of Solids and Structures 2015, 66, 207 – 217.

DOI: 10.1016/j.ijsolstr.2015.02.052

Google Scholar

[8] C. Weigelt, E. Jahn, H. Berek, C. G. Aneziris, R. Eckner, L. Krüger, Adv. Eng. Mater. 2015, 17 (9), 1357 – 1364.

DOI: 10.1002/adem.201400559

Google Scholar

[9] Y. Zhou, Y. Guo, D. Li, X. Duan, Trans. Nonferrous Met. Soc. China 2003 (13), 1086 – 1091.

Google Scholar

[10] Y. Guo, Y. Zhou, D. Li, X. Duan, T. Lei, J. Mater. Sci. Technol. 2003 (19), 137 – 140.

Google Scholar

[11] C. Weigelt, C. G. Aneziris, D. Ehinger, R. Eckner, L. Krüger, C. Ullrich, D. Rafaja, Journal of Composite Materials 2015, 49 (28), 3567 – 3579.

DOI: 10.1177/0021998314567698

Google Scholar

[12] S. Decker, Entwicklung der Mikrostruktur und der mechanischen Eigenschaften eines Mg-PSZ-partikelverstärkten TRIP-Matrix-Composits während Spark Plasma Sintering, Dissertation, Logos Verlag Berlin GmbH.

Google Scholar

[13] A. Reckziegel, Friatec AG 2015 (2), 1 – 10.

Google Scholar

[14] V. F. Zackay, E. R. Parker, D. Fahr, R. Busch, Trans. Am. Soc. 1967 (60), 252 – 259.

Google Scholar

[15] I. Tamura, Metal Science 2013, 16 (5), 245 – 253.

DOI: 10.1179/030634582790427316

Google Scholar

[16] A. Weidner, Stahl-Online, 2016, 16 – 19.

Google Scholar

[17] H. J. Frost, M. F. Ashby, Deformation-mechanism maps: The plasticity and creep of metals and ceramics, 1st ed., Pergamon Press, Oxford, New York, Toronto, Sydney, Paris, Frankfurt Main i.e. Kronberg-Taunus (1982).

Google Scholar

[18] R. Raj, MTA 1981, 12 (6), 1089 – 1097.

DOI: 10.1007/BF02643490

Google Scholar

[19] Y. V. R. K. Prasad, H. L. Gegel, S. M. Doraivelu, J. C. Malas, J. T. Morgan, K. A. Lark, D. R. Barker, Metall. Trans. 1883 (15).

Google Scholar

[20] S. Venugopal, S. L. Mannan, Y.V.R.K. Prasad, Materials Letters 1993, 17 (6), 388 – 392.

DOI: 10.1016/0167-577X(93)90132-H

Google Scholar

[21] Y. V. R. K. Prasad, K. P. Rao, S. Sasidhara, Hot working guide: A compendium of processing maps, ASM International, Materials Park, OH (2015).

Google Scholar

[22] Z. Huang, Z. Lu, S. Jiang, K. Zhang, J. Mater. Res. 2016, 31 (19), 2964 – 2976.

DOI: 10.1557/jmr.2016.315

Google Scholar

[23] Y. V. R. K. Prasad, T. Seshacharyulu, International Materials Reviews 2013, 43 (6), 243 – 258.

DOI: 10.1179/imr.1998.43.6.243

Google Scholar

[24] Z. Chen, P. Nash, steel research int. 2018, 89 (3), 1700321.

DOI: 10.1002/srin.201700321

Google Scholar

[25] Y. H. Duan, J. of Materi Eng and Perform 2013, 22 (10), 3049 – 3054.

DOI: 10.1007/s11665-013-0604-1

Google Scholar

[26] H. Wu, S. P. Wen, H. Huang, K. Y. Gao, X. L. Wu, W. Wang, Z. R. Nie, Journal of Alloys and Compounds 2016, 685, 869 – 880.

DOI: 10.1016/j.jallcom.2016.06.254

Google Scholar

[27] Ngoc Nguyen, Einfluss von Verfahrensparamtern beim Pulverschmieden auf die Eigenschaften der gefertigten Werkstücke, Dissertation, TU Bergakademie Freiberg (1958).

Google Scholar

[28] H. A. Kuhn, C. L. Downey, International Journal of Powder Metallurgy 1971, 15 – 25.

Google Scholar

[29] Sven Raßbach, Grundlegende Untersuchungen zum Umformverhalten von Gradientenwerkstoffen unter Anwendung von Druckumformverfahren, Dissertation, TU Bergakademie Freiberg (2002).

Google Scholar

[30] R. Dalheimer, K. Dieterle, K. Gieselberg, K. Lange, Lehrbuch der Umformtechnik, Springer-Verlag Berlin Heidelberg (1974).

DOI: 10.1007/978-3-662-08344-4

Google Scholar

[31] K. Lange, Massivumformung, 2nd ed., Umformtechnik, Handbuch für Industrie und Wissenschaft / Kurt Lange Hrsg. ; Bd. 2, Springer, Berlin (1988).

DOI: 10.1007/978-3-662-10688-4

Google Scholar

[32] S. Martin, S. Richter, S. Decker, U. Martin, L. Krüger, D. Rafaja, Steel Research 2011 (9), 1133 – 1140.

DOI: 10.1002/srin.201100099

Google Scholar