A Simulation-Based Approach to Predict the Springback Behavior of Ultra-High Strength Spring Strips

Article Preview

Abstract:

One effect of high influence on the dimensional accuracy during bending is springback. It inevitably occurs due to the elastic proportion in the material behavior. The impact is notably high when producing springs made of ultra-high strength spring strips of the steel grade 1.4310 (X10CrNi18-8). The high yield ratio needed to fulfil the functionalities required during application leads to dimensional inaccuracies that have to be compensated during the production process. This paper reports a simulation-based approach to predict the springback behaviour of ultra-high strength spring strips with tensile strengths TS = 1500-1800 MPa. Based on the results of advanced material testing and modelling, the numerical prediction of the springback behavior of an exemplary bending process (free bending) has been investigated in detail. This helps to obtain deeper knowledge and understanding of the springback phenomenon and to achieve suitable strategies for a more efficient industrial tool and process design while processing ultra-high strength spring strips.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] R.H. Wagoner, H. Lim, M.-G. Lee, Advanced Issues in springback, Int. J. Plast. 45 (2013) 3-20.

Google Scholar

[2] K. Richter, F. Reuther, R. Müller, D. Landgrebe, Investigating the Influence of Bending Parameters on the Springback Behavior of Ultra-High Strength Spring Strips, Mater. Sci. Forum 918 (2018) 125-133.

DOI: 10.4028/www.scientific.net/msf.918.125

Google Scholar

[3] J. Mendiguren, F. Cortés, X. Gómez, L. Galdos, Elastic behaviour characterisation of TRIP 700 steel by means of loading-unloading tests, Mater. Sci. Eng. A 634 (2015) 147-152.

DOI: 10.1016/j.msea.2015.03.050

Google Scholar

[4] R. Pérez, J.A. Benito, J.M. Prado, Study of the Inelastic Response of TRIP Steels after Plastic Deformation, ISIJ Int. 45 (2005), 12, 1925-1933.

DOI: 10.2355/isijinternational.45.1925

Google Scholar

[5] S. Vitzhtum, M. Eder, C. Hartmann, W. Volk, Investigation on strain dependent elastic behavior for accurate springback analysis, J. Phys. Conf. Ser. 1063 (2018) 012118.

DOI: 10.1088/1742-6596/1063/1/012118

Google Scholar

[6] DIN EN 10151, Stainless steel strip for springs – Technical delivery conditions, (2003).

Google Scholar

[7] DIN EN ISO 6892-1, Metallic materials - Tensile testing - Part 1: Method of test at room temperature, (2017).

Google Scholar

[8] F. Barlat, J.C. Brem, J.W. Yoon, K. Chung, R.E. Dick, S.H. Choi, F. Pourboghrat, E. Chu, D.J. Lege, Plane stress yield function for aluminium alloy sheets – Part 1: Theory, Int. J. Plast. 19 (2003) 297-319.

DOI: 10.1016/s0749-6419(02)00019-0

Google Scholar

[9] C. Mertin, K. Huse, G. Hirt, Inverse modelling approach in 3-point bending for elasto-plastic material parameter identification of thin spring steel, J. Phys. Conf. Ser. 734/3 (2016), 032011.

DOI: 10.1088/1742-6596/734/3/032011

Google Scholar

[10] M. Rosenschon, S. Suttner, M. Merklein, Validation of kinematic hardening parameters from different stress states and levels of plastic strain with the use of the cyclic bending test, Key Eng. Mater. 639 (2015) 385-392.

DOI: 10.4028/www.scientific.net/kem.639.385

Google Scholar

[11] J. Franeck, Bestimmung elastisch-plastischer Materialparameter von Flugzeug-Aluminiumblechen unter niederzyklischen Zug-Druck-Beanspruchungen, PhD, Dresden (2014).

Google Scholar

[12] W. Bleck, Y. Ma, X. Guo, The TRIP Effect and Its Application in Cold Formable Sheet Steels, Steel Res. Int. 88 (2017), 10, 1700218.

DOI: 10.1002/srin.201700218

Google Scholar

[13] E. Doege, S. Kulp, C. Sunderkotter, Properties and application of TRIP‐steel in sheet metal forming, Steel. Res. 73 (2002) 303-308.

DOI: 10.1002/srin.200200213

Google Scholar

[14] S. Thibaud, N. Boudeau, J. Gelin, Influence of initial and induced hardening in sheet metal forming, Int. J. Damage Mech. 13 (2002) 107-122.

DOI: 10.1177/1056789504039256

Google Scholar

[15] L. Sun, R.H. Wagoner, Complex unloading behavior: Nature of the deformation and its consistent constitutive representation, Int. J. Plast. 27 (2011) 1126-1144.

DOI: 10.1016/j.ijplas.2010.12.003

Google Scholar